
Pianist’s Hands: Synthesis of Musical Gestures

Dissertation

zur

Erlangung der naturwissenschaftlichen Doktorwürde
(Dr. sc. nat.)

vorgelegt der

Mathematisch-naturwissenschaftlichen Fakultät

der

Universität Zürich

von

Stefan Müller

von

Rickenbach LU

Begutachtet von

Prof. Dr. Peter Stucki
PD Dr. Guerino Mazzola

Zürich 2004

Die vorliegende Arbeit wurde von der Mathematisch-naturwissenschaftlichen Fakultät
der Universität Zürich auf Antrag von Prof. Dr. Peter Stucki und Prof. Dr. Klaus Dittrich
als Dissertation angenommen.

All trademarks referenced in this thesis are the property of their respective companies.

ii

Abstract
The process of music performance has been the same for many centuries: a work was
perceived by the listening audience at the same time it was performed by one or a group
of performers. The performance was not only characterised by its audible result, but also
by the environment and the physical presence of the performing artists and the audience.
Further, a performance was always unique in the sense that it could not be repeated in
exactly the same way.

The evolution of music recording technology imposed a major change to this situa-
tion and to music listening practise in general: a recorded performance suddenly became
available to a dramatically increased number of listeners, and one could listen to the same
performance as many times as desired. However, in a recorded music performance, the
environmental characteristics and the presence of the performing artists and the audience
are lost. This particularly includes the loss of musical gestures, which are an integral part
of a music performance. The availability of electronic music instruments even enforces
this loss of musical gestures because the previously strict connection between performer,
instrument, and listener is blurred.

This thesis deals with the problem of the construction of musical gestures from a
given music performance. A mathematical model where musical gestures are represented
as high-dimensional parametric gesture curves is introduced. By providing a number of
mathematical operations, the model provides mechanisms for the manipulation of those
curves, and for the construction of complex gesture curves out of simple ones. The model
is embedded into the existing performance model of mathematical music theory where
a musical performance is defined as a transformation from a symbolic score space to a
physical performance space.

While gestures in the symbolic domain represent abstract movements, gesture
curves in the physical domain reflect “real” movements of a virtual performer, which
can be rendered to a computer screen. For the correctness of the movements one has to
take into account a number of constraints imposed by the performer’s body, the instru-
ment’s geometry, and the laws of physics. In order to satisfy these constraints a shaping
mechanism based on Sturm’s theorem for cubic splines is presented.

A realised software module called the PerformanceRubette provides a framework
for the construction and manipulation of gesture curves for piano performance. It takes
a music performance and given constraints based on a virtual hand model as input. The
resulting output consists of sampled physical gesture curves describing the movements
of the virtual performer’s finger tips. The software module has been used to create ani-
mated sequences of a virtual hand performing on a keyboard, for the animation of abstract
objects in audio-visual performance applications, and for gesture-based sound synthesis.

Keywords: Gestural Performance, Performance Interfaces, Performance Theory,
Computer Animation.

iii

iv

Kurzfassung
Während Jahrhunderten stand im Kern einer Musikaufführung, dass diese von den
Zuhörern zur gleichen Zeit wahrgenommen, wie sie von den Interpreten wiedergegeben
wurde. Eine Aufführung war neben ihrer akustischen Realität auch durch ihre Umgebung
und durch die Präsenz der Interpreten und der Zuhörer charakterisiert. Zudem galt jede
Aufführung als Unikat und konnte nicht exakt in der selben Form wiederholt werden.

Die Möglichkeit, eine Aufführung akustisch aufzunehmen, auf replizierbaren Me-
dien zu speichern und diese an beinahe beliebigen Orten wiedergeben zu können, eröffnet
das Tor zu einem vollkommen neuen Umgang mit Musik und deren Aufführung. Erstens
erreicht eine bestimmte Aufführung ein wesentlich höheres Zielpublikum als zuvor, und
zweitens kann diese beliebig oft in der selben Form wiedergegeben werden. Da sich der
Aufnahmeprozess jedoch nur auf die akustische Realität bezieht, gehen die Eigenschaften
der Umgebung und die Handlungen der Interpreten und des Publikums sowie deren Wech-
selwirkungen bei der Aufnahme verloren. Dieser Verlust beinhaltet auch die musikalische
Gestik, welche ein integraler Bestandteil einer Interpretation ist. Mit der Verfügbarkeit
von elektronischen, computer-gestützten Musikinstrumenten wird der Verlust der Gestik
weiter verstärkt, da die zuvor feste Verbindung zwischen Zuhörer, Interpret und Instru-
ment zu einem grossen Teil aufgelöst ist.

Die vorliegende Arbeit befasst sich mit dem Problem der Konstruktion musika-
lischer Gesten aus der Interpretation einer gegebenen Partitur. Im Zentrum steht dabei
ein mathematisches Modell, in welchem Gesten als hoch-dimensionale parametrische
Gestenkurven repräsentiert werden. Eine Anzahl von mathematischen Operationen
ermöglicht die Manipulation dieser Kurven und die Konstruktion von komplexeren
Gesten aus einfachen Basisgesten. Das Modell ist eine Erweiterung des bestehenden Mod-
ells der mathematischen Interpretationstheorie, welche eine Interpretation als Transfor-
mation von einem symbolischen Partiturraum in einen physikalischen Aufführungsraum
definiert.

Während Gesten in der symbolischen Realität abstrakte Bewegungen repräsen-
tieren, stellen Gestenkurven in der physikalischen Realität reale Bewegungen eines
virtuellen Interpreten dar, welcher mit Hilfe der Computergrafik am Bildschirm
dargestellt werden kann. Die Korrektheit der Bewegungen wird durch eine Anzahl Be-
dingungen gewährleistet. Die Bedingungen sind durch die Anatomie des Interpreten, der
Geometrie des Instrumentes und durch die physikalischen Gesetze gegeben. Der Sturm-
sche Satz über die Nullstellen von Polynomen hilft dabei, die Kurven so zu verformen,
dass sie den gegebenen Bedingungen genügen.

Das Softwaremodul PerformanceRubette ermöglicht die Konstruktion und die Ma-
nipulation von Gestenkurven für Klavierinterpretationen. Ausgehend von einer inter-
pretierten Partitur und den Rahmenbedingungen eines computergestützten Handmod-
ells werden dabei die Bewegungskurven der Fingerspitzen des Interpreten berechnet.
Diese können von einer Animationssoftware importiert und zur Animation des Hand-
modells verwendet werden. Zudem können die Bewegungskurven auch zur Animation
von abstrakten visuellen Objekten in einer virtuellen Umgebung oder zur gesten-basierten
Steuerung von Synthesizern verwendet werden.

v

vi

Acknowledgments
This work was carried out at the MultiMedia Laboratory (MML) of the University of
Zürich’s Computer Science Department. I thank Prof. Dr. Peter Stucki who has set a
milestone with the foundation of the MML and who constantly supported my work. I also
thank PD Dr. habil. Guerino Mazzola. His enormous efforts in systematically applying
mathematics to music have “modernised” the field of modern music research and his way
of thinking has been a constant source of inspiration to me. I thank all my colleagues
and friends at the MML for providing a stimulating and lively working environment: Dr.
Stefan Göller, Dr. Mauro Iacobacci, Gérard Milmeister, Dr. Hansrudi Noser, Dr. Christian
Stern, Dr. Marcia Ponce de León, Dr. Jody Weissmann, and PD Dr. Christoph Zollikofer.

My thanks go to Prof. Dr. Luc Van Gool and his group at the Computer Vision
Laboratory at ETHZ for the permission to use their excellent hand model.

Particular thanks are due to my friends at Corebounce, Pascal Müller, Dr. Simon
Schubiger, Matthias Specht, and Christian Widmer: the co-operative, endless program-
ming sessions, and the numerous unforgettable live performances have definitely lead to
new insights where live multimedia art stands at present, and where it may lead to in
future.

Finally, I thank my parents who always supported my work and who have always
been there when “little big city” was getting too big and I needed a few quiet days in the
countryside.

vii

viii

Contents

1 Introduction 1
1.1 Synthesis of Musical Gestures . 2
1.2 Thesis Overview . 3

2 Background 5
2.1 Musical Gestures . 5

2.1.1 Definitions and Classifications 6
2.1.2 The Loss of Gestures in Recorded Music 7
2.1.3 Gestural Primitives and Gesture Grammars 7

2.2 Music Notation . 8
2.3 Theory of Music Performance . 9

2.3.1 Conventions and Definitions . 9
2.3.2 An Infinitesimal View on Expression 10
2.3.3 Performance Transformations 10
2.3.4 Inverse Performance . 11

2.4 Denotators and Forms . 12
2.4.1 Forms . 12
2.4.2 Denotators . 13

2.5 Digital Sound Synthesis . 16
2.5.1 Synthesis Basics . 16
2.5.2 Synthesis Methods . 17
2.5.3 Modalys . 18

2.6 Human Hand Models . 19
2.6.1 Hand Anatomy . 19
2.6.2 Hand Models in Anatomy and Biomechanics 19
2.6.3 Hand Models in Computer Graphics 20

2.7 The Distributed Rubato Platform . 21
2.8 Soundium 2 . 23

2.8.1 System Architecture . 23

ix

x Contents

3 Gesture Curves and Gesture Spaces 29
3.1 A Model for Musical Gestures . 30

3.1.1 Music Notation and Gestures: A Thesis 31
3.1.2 Lifted Pairs of Spaces and Gesture Transformations 32

3.2 Operations on Gesture Curves . 33
3.2.1 Constant Gestures . 33
3.2.2 Add and Scale . 34
3.2.3 Reverse Operation (Switch) . 34
3.2.4 Concatenation . 34
3.2.5 Product . 34
3.2.6 Top Space . 34

3.3 Initial Construction of Gesture Curves 35
3.4 Constrained Shaping of Gesture Curves 36

3.4.1 Curve Construction Revisited 39
3.4.2 Defining the Virtual Keyboard 39
3.4.3 Defining a Constrained Hand Model 40
3.4.4 Boundary Value Mapping . 47
3.4.5 A General Method for Solving the Inequalities 49
3.4.6 Solution of the One-Dimensional Case 50
3.4.7 Separating Geometric and Physical Constraints 52

3.5 Freezing Gesture Curves . 53

4 Implementation 57
4.1 The Distributed Rubato Architecture . 57
4.2 Supporting Components . 58

4.2.1 The Matrix Package . 59
4.2.2 The Parameteric Curve Classes 61

4.3 The PerformanceRubette . 64
4.3.1 Overall Design . 65
4.3.2 Support for Complex Instrument Spaces and Musical Gestures . . 65

4.4 Efficient Calculation and Shaping of Gesture Curves 67
4.4.1 Score Segmentation . 68
4.4.2 Curve Setup . 71
4.4.3 Symbolic Gesture Curve Construction 71
4.4.4 Shaping of Physical Gesture Curves 74

5 Applications 79
5.1 Virtual Music Performers . 79
5.2 Gesture-controlled Abstract Objects . 82
5.3 Gesture-controlled Sound Synthesis . 85
5.4 Composition with Musical Gestures . 86

Contents xi

6 Conclusions and Future Work 89
6.1 Results . 90
6.2 Problem Areas . 90
6.3 Future Work . 91

A CD-ROM Contents 93

Bibliography 95

Index 101

xii Contents

Chapter 1

Introduction

For many centuries, the process of music performance has been the same: the work was
performed by one or a group of performers, and perceived at the same time by the listening
audience. A performance was always unique in the sense that a live performance could
not be reproduced in exactly the same manner as a previous performance. Moreover, a
performance was not only characterised by its audible result: the environment, e.g., a
concert hall, and physical presence of the performing artists and the listening audience
accounted for the originality of every performance.

The availability of music recording devices – the phonograph was invented by
Thomas Edison in 1877 – had two fundamental effects on the established nature of mu-
sic performance: First, the possibility to record, store, and play back a performance dra-
matically increased the number of listeners, one could listen to the performance without
actually being there. Consequently, the number of listeners became much larger than the
number of people who are doing music, and today music is mostly produced to be listened
to. Second, a music performance could be played as many times as desired, and important
parts could be selected and repeated, or be compared to other performances. In addition,
there was finally a way to archive performed music.

However, the evolution of recording technology opened a gap that has not been
closed to these days: Only the acoustic aspect of a performance is recorded, either in
analogue form, as on vinyl discs, or digitally sampled and encoded, as on compact disks.
Other integral parts of the performance are lost.

One of those lost aspects, and maybe the most important one, lies in the nature of
recording and reproduction itself: the “feeling” of actually anticipating a live performance
now, the fact that other people are performing a piece, and that other listeners are present,
can not be recorded with today’s technical capabilities. For instance, this also includes
the human interaction between conductor and performers, performers among themselves,
and performers and listeners.

Another aspect is concerned with the environment where a performance takes place.
For instance, a concert recorded in an auditory will have a completely different effect
when listened to at home. While there has been a lot of success in reconstructing a part of

1

2 Chapter 1. Introduction

the acoustic room properties when playing back a performance, the visual impression of
the environment is lost.

Finally, the gestural part of the performance is lost. In a live performance, the lis-
tener has a clear relation of the performer’s body movements, the physical interaction with
the instrument, and the acoustic signals being produced.

At this point we may argue that the recording of above aspects can be covered by
the ability to record the performance on video (e.g., on a DVD) as well. This is in part
true for the second and the third aspect, recording a concert on video and play it back on
TV is in fact a wide-spread practice. However, another development in audio technology
requires more than just video-playback of a performance: the capability to produce sound
synthetically, e.g., via synthesisers and computers, blurs the previously strict connection
between environment, performer, instrument, and listener (Iazzetta, 2000). In the most
drastic case, where the computer performs a piece, every aspect of human interaction is
simply not existing, or took place in the effort to program the computer.

Thus, if we strive for making computer-generated, or computer-aided music perfor-
mance more realistic we will have to deal with the reconstruction of the mentioned lost
aspects. Ideally, this would include the reconstruction of all sensible realities, but mainly
we would have to deal with visual and audible components of a performance.

1.1 Synthesis of Musical Gestures
This thesis discusses the construction of musical gestures. It deals with the problem of
how we can synthesise gestures from given musical material in such a way that the ges-
tures can be used for animation of a virtual performer playing an instrument. The way to
a solution is very interdisciplinary, covering issues from musicology, music performance
theory, playing technique, sound synthesis, and computer animation. First of all, a model
for musical gestures, or gestures in general, will be required. As we shall see, only a few
attempts have been made to formalise gestures in such a way that the model becomes
available for computing. Ideally, the model should neither be dependent on an instrument,
nor on the performer playing it. In addition, the model should be valid for different types
of gestures, e.g., for movements related to playing the instrument, as well as for (musi-
cally) completely independent gestures. The model should also allow the construction of
complex gestures from simple ones in order to build grammars of gestures at different
physical and mental levels. Once the model has been defined, we will need mechanisms
(i.e., algorithms) for the transformation of the given musical material to gestures, and vice
versa. Additionally, the synthesised gestures should be available to be used by computer
animation tools, e.g., for controlling a performer in a virtual environment.

In our approach, the model of musical gestures can be seen as an extension of ex-
isting research in mathematical music theory (Mazzola, 2002c), and performance the-
ory in particular, where a performance can be seen as a transformation from a symbolic
space (e.g, the score) to a physical space (e.g., the acoustic result of the performance).
This situation is reflected in our model, there are symbolic gestures, representing abstract
movements of a performer in the symbolic domain, and physical gestures representing

1.2. Thesis Overview 3

movements of a performer playing on an instrument in the physical domain. In our model,
gestures are based on parameterised curves of arbitrary dimension. The spaces containing
these curves constitute the individual properties of the particular space being required,
either in the symbolic, or in the physical domain. Further, we will present operations on
gesture curves, for example combination, concatenation, scaling, etc., thereby providing
a mechanism for building complex gestures from gesture primitives.

From the viewpoint of computer animation, the automatic or semi-automatic gener-
ation of animated sequences has become immensely important over the last few years. At
the time of writing this thesis, the third part of the movie “The Lord of the Rings” is run-
ning at the theatres. Sequences with thousands of computer-animated soldiers and mon-
sters are impossible to be animated manually, and the there is a large variety of software
tools for automated locomotion generation. Our method contributes to this development
in the sense that computer-aided synthesis of musical gestures for human hand models
can be applied in the same way to other types of gestures, for instance for general hand
movements, for hand writing, or for hand sings, as they appear in sign languages.

While our model itself is not limited to a specific instrument, its realisation, in terms
of implementation as a computer program, is focused on finger movements in piano per-
formance. The results, motion curves of the finger tips for a given performance, can be
used as input for a virtual hand model. This procedure can be seen as a computational
pre-stage to further computer animation steps, such as inverse kinematics handling, or
skinning.

One obvious application of synthesised gestures is, as mentioned above, the ani-
mation of virtual performers to make music performance more realistic. In addition, the
availability to construct gestures from musical scores and use them to animate virtual
performers is very helpful for the creation of educational music tools. Another useful ap-
plication are gesture-controlled synthetic instruments, where our model can be seen as the
formal glue between gestural control interfaces and synthesisers. In addition, the model
can be used for composition, and for general visual accompaniment to music performance.

1.2 Thesis Overview
After this introduction, chapter 2 will present the background that has been the foundation
of our model of musical gestures and its realisation. This includes musicological topics,
such as definitions of musical gestures and music notation, an introduction to music per-
formance theory and an overview on so-called Denotators and Forms, which account for
the mathematical basis of our model. Further a short outline on different sound synthesis
methods is given. The section on human hand models gives an overview on the anatomy of
the human hand, and presents existing work of human hand models in computer graphics
and animation. The concluding two sections deal with the platforms where our model has
been realised: the first is a music research platform where such new models can be imple-
mented in a convenient way. The second is a multimedia framework where synchronised
audio and video applications can be modelled in real-time.

Chapter 3 presents our model of musical gestures. This includes the definition of

4 Chapter 1. Introduction

gestures as parameterised curves. Different elementary operations on the curves are pre-
sented. Then, we will show how gesture curves can be constructed from a (symbolic) mu-
sical score, and how they can be shaped according to constraints given by a hand model
in the physical domain.

The realisation of our model will be presented in chapter 4. This chapter will present
the architecture of Distributed Rubato, and several software components that were help-
ful for the implementation of the gesture model. It will then point out the detail design
of the PerformanceRubette, a software component which is part of Distributed Rubato.
The PerformanceRubette is a tool for music performance research, it serves as the basic
implementation of the theory given in (Mazzola, 2002c) with the addition of our model of
musical gestures. To conclude, we will present the algorithms that have been implemented
to construct and shape musical gesture curves.

In chapter 5, we shall present realised and possible applications of the presented
theory and implementation. First, we shall show how gesture curves have been used to
animate a human hand model with the help of computer animation software. Related
to the animation of a human hand model based on gesture curves is the generation and
animation of abstract objects in interactive live performance tools: here gesture curves
provide a powerful mechanism to performing video-artists. Then, we shall point out how
gesture-controlled sound synthesis can be realised. We will conclude with a section on
gesture-based musical composition.

Finally, chapter 6, contains a recapitulation of the basic ideas presented in this thesis.
It will highlight the solutions and problem areas and give an outlook on possible directions
for future research and development.

Chapter 2

Background

This chapter provides the reader with the necessary background required for understand-
ing the theory and the implementation presented in the subsequent chapters. It takes the
multi-disciplinary character of this thesis into account and starts out with musicological
background on musical gestures, music notation, and the theory of music performance.
Then an introduction to Denotators and Forms is given, these concepts provide the math-
ematical foundation for our theory of musical gestures. Section 2.5 will give an overview
on current sound synthesis methods, with special focus on physical modelling. It is as-
sumed that the reader has basic signal-processing knowledge. The chapter then continues
with an introduction to human hand models, and in particular presents existing work on
hand models in the domain of computer graphics and animation. The concluding two
sections present two software frameworks that were used to realise (i.e., implement) the
theory on musical gestures.

2.1 Musical Gestures
In almost every situation of human behaviour and communication gestures are present.
Often one is not aware of the expressive power of gestures since many of them are not
actively realised by our perception. Generally, any body movement can be seen as a ges-
ture, it may be a long-trained action to perform a specific goal on the one hand, or an
uncontrolled reflex movement on the other:

gesture, n.
1. a. Manner of carrying the body; bearing, carriage, deportment (more fully
gesture of the body); rarely in pl. Obs. (mergend in 3).
b. Grace of manner. Also pl. Obs.
2. a. Manner of placing the body; position, posture, attitude, esp. in acts of
prayer or worship. Also, specified posture. Obs.
3. a. In early use: The employment of bodily movements, attitudes, expres-
sion of countenance, etc., as a means of giving effect to oratory. Obs.

5

6 Chapter 2. Background

b. Now in narrower sense, as a generalised use of 4: Movement of the body
or limbs as an expression of feeling.
4. a. A movement of the body or any part of it. Now only in restricted sense:
A movement expressive of thought or feeling.
b. transf. and fig.; spec. [after F. geste; cf. beau geste] a move or course of
action undertaken as an expression of feeling or as a formality; esp. a demon-
stration of friendly feeling, usu. with the purpose of eliciting a favourable
response from another.
5. attrib., as gesture language, -sign, -speech, -syntax; gesture theory, a
theory of the origin of language; hence gesture-theorist.
(The Oxford English Dictionary, Oxford University Press, OED Online).

In this section, we shall discuss different attempts to define and classify gestures
with particular focus on musical gestures. Further, we will point out the shift that took
place when recording of music became available, a shift that took place in the physical
(acoustic) reality, and which has its counterpart in the symbolic (score) reality. We will
conclude with observations on gesture grammars and gestural primitives, which can pro-
vide a formal framework for human motion in general.

2.1.1 Definitions and Classifications
In (Cadoz and Wanderley, 2000) different definitions of gestures from human – human,
and human – computer interaction literature are discussed. It becomes clear that there is
no single definition that covers all aspects related to gestures, either the definitions are
very general and not specific enough for certain fields, or they are too specialised and
only valid in their own context but not any longer in an other domain. Common to many
definitions is the notion that gestures are body movements that contain information and
produce meaning; for instance:

Gesture: for the purpose of this paper it is sufficient to understand “gestures”
as body movements which convey information that is in some way meaning-
ful to a recipient (Wachsmuth, 1999, 277).

The production of sounds intimately involves human motion. For the classification
of musical gestures Ramstein (1991) has proposed an analysis of instrumental gestures
consisting of three approaches: A phenomenological approach, a functional approach, and
an intrinsic approach. The phenomenological approach, a descriptive analysis, is based
on a number of criteria: cinematic (analysis of the movement speed), spatial (size of the
space where the gesture takes place), and frequential (movement decomposition regarding
its periodic content). As the next step, the functional analysis refers to the possible func-
tions a gesture may perform in a specific situation. The three distinct types of gestures in
this approach are the effective gestures (mandatory movements to mechanically produce
sound), the accompanist gestures (body movements associated to effective gestures), and
the figurative gestures (gestures unrelated to the purpose of sound production). Finally,
the intrinsic approach is based on the performer’s viewpoint of producing gestures, i.e.

2.1. Musical Gestures 7

the hand as a body part with fine motor skills and a number of nervous receptors. Then
the diversity of trajectories and gestural behaviours within a system (fingers, hands, feet)
is analysed.

From the viewpoint of our work, it is important to point out that we are looking for
a formal definition of musical gestures that will fit in a mathematical framework. We will
give our own definition in section 3.1, where gestures are defined by means of param-
eterised curves residing in an arbitrary space. Gestures in our framework can therefore
also represent movements not only in physical space, but also in mental spaces, for in-
stance. Mental gestures (Zagonel, 1992) are closely related to composition and listening.
A composer often starts with a mental image of sound gesture to compose a vocal or in-
strumental gesture. Listeners, on the other hand, often mentally recreate the performer’s
physical gestures while listening to music.

2.1.2 The Loss of Gestures in Recorded Music

An important observation was made in (Iazzetta, 2000) that the appearance of electronic
and recorded sound induced a shift in the habits of listening to music:

For many centuries, people learned to listen to sound that had a strict rela-
tion to the bodies that produced them. Suddenly, all this listening experience
accumulated during the long process of musical evolution was transformed
by the appearance of electronic and recorded sounds. When one listens to
artificially generated sounds he or she cannot be aware of the same type of
concrete and mechanic relations provided by traditional acoustic instruments
since these artificial sounds are generated by processes that are invisible to
our perception. These new sounds are extremely rich, but at the same time
they are ambiguous for they do not maintain any definite connection with
bodies or gestures (Iazzetta, 2000, 259).

Thus, we may say that gestures are lost in recorded music. While this happened in
the physical (acoustic) reality of music performance, we will find a parallel development
in the symbolic (score) reality in section 2.2: music notation originated from writing down
gestures, but its evolution lead to ever higher abstraction levels. In today’s Western music
notation, only the abstract score symbols remain and gestures are not explicitly present
any longer.

2.1.3 Gestural Primitives and Gesture Grammars

If we want to apply computational methods to gestures and gestural performance, we first
need a formalisation of gestures in terms of gesture grammars and gestural primitives.
With an eye on the enormous complexity of human motion, it becomes clear that one
has to start out with elements (i.e., the primitives) characterising simple motions, and
then construct more complex gestures built of those elements, eventually resulting in a
grammar of gestures.

8 Chapter 2. Background

While there has been extensive research in other gesture-related fields, for instance
in American Sign Language (ASL) (Liddell, 2003), or in Human Computer Interaction
(HCI) (Weissmann, 2003), much less work has been done in the area of musical gestures.

One of the exceptions is (Choi, 2000), where attempts are made to bring a formal-
isation of human motion in terms of performance gesture into the computable domain.
Choi introduces and classifies a number of gestural primitives, which, in his context, are
fundamental human movements that relate the human subject to dynamic responses in
an environment. A gestural primitive consists of four elements: a n-dimensional phase
space P of an input sensor; an initial motion ∆, which is a vector in P ; a function λ(t)
describing change in ∆ over time, identified as “observable” change of movement; and
a physical model M that maps ∆ and λ(t) from phase space P to a performer’s move-
ment space. The physical model M consists of three classes of mapping between phase
space P and movement space: rotation (change in orientation), gradient (linear change),
and period (repetition). These changes account for the mechanical constraints of the input
sensor, and for the physical disposition of the performer to the sensor. This formal frame-
work is then realised in a software environment to facilitate multi-modal performances
with interactive simulations.

As we shall see in section 3.2, we will define operations on gestures, that for instance
allow manipulation and composition of basic gestures, in order to build more sophisticated
ones.

2.2 Music Notation
This section gives an overview of the evolution of western music notation. Almost every
culture with its own script has developed its own script for music notation. The notation
signs are often closely related to the signs of the language script. While many types of
early music were passed from generation to generation without being notated, the avail-
ability of music notation allowed for precision and consistency.

The Greek and Roman systems were non-graphical notations that used letters of
their alphabets to symbolise notes. The occidental music theory is still in context with
the Greek music theory, as it has been passed down by Boethius (c. 480 – c. 525 A.D.),
a roman philosopher, poet and politician. Today’s use of the letters A to G for naming a
note of a certain pitch class, is sometimes called Boethian notation and has been adopted
from Greek and Roman practise.

First examples of Christian notation are found in theoretical essays, such as the
Dasia notation in Musica enchiriadis, or the letter notation of Hucbald of St. Amand. The
oldest Neumes are found in the 10th century. Neumes (Parrish, 1957) are signs denoting a
single pitch (virga, punctum), two pitch classes (pes, clivis), and three pitch classes, and
have been used to support the consistency of handing down the Gregorian chorals. The
word “neuma” is the Greek word for “hint”, but is also used in the sense of “pneuma”
(breath) and “nota” (clause). Prior to neumes, cheironomy, which means the use of hand
gestures to indicate melodic shape, was used in different cultural contexts, such as in
Ancient Egypt, in the Jewish tradition, in the Byzantine tradition, and in the occidental

2.3. Theory of Music Performance 9

choral.
The use of bar lines has been introduced for the first time by Guido of Arezzo in the

11th century, and this so-called diastematic notation made it possible to record the pitch
of a note. In the 12th century, the neumes evolved into the square notation. The duration
of a note was constituted by the pattern of subsequent two or three note ligatures, but it
was not possible to denote the exact duration of a single note. Only with the introduction
of the mensural notation by Franco of Köln in the 13th century it became possible to
abstractly define the exact duration of a note. Still, the concept of bars was not introduced
before the baroque age.

With today’s western music notation we have a highly abstract method of writing
down musical content, and, as just has been shown, the degree of abstraction has been
ever increasing with the evolution of music notation over the centuries. This observation
will lead us to the thesis in section 3.1.1 that symbols in a musical score can be seen as
frozen gestures.

2.3 Theory of Music Performance
In (Mazzola and Zahorka, 1994b), a general theory of performance transformations ℘
from a symbolic score space S to a corresponding physical space P was given. The trans-
formation ℘ can be represented by performance vector fields that generalise the well-
known tempo curves of a performance. This theory has been implemented as a module
in the music research software Rubato (Mazzola and Zahorka, 1994a) and has been suc-
cessfully applied to the performance of classical compositions. Stange-Elbe (1999) has
performed Contrapunctus III of J. S. Bachs Die Kunst der Fuge with Rubato, and the
results have been presented at the Diderot Conference on Mathematics and Music at the
Institut de Recherche et Coordination Acoustique/Musique (IRCAM) (Mazzola, 2002a).
For a full account on performance theory, refer to (Mazzola, 2002c), parts VIII and IX.

2.3.1 Conventions and Definitions
Let us first introduce some conventions used throughout this thesis. First of all, it is crucial
to understand that the theory deals with symbolic musical events (e.g., data retrieved from
a score file) rather than acoustic signals. Thus, a score (or composition) C is a set of
vectors (also referred to as points, notes, or events) in an n-dimensional vector space.
The performance CPerformed is the corresponding set of the performance events, i.e., the
transformed score events.

The dimension of the vector spaces is arbitrary, because the presented theory is
generic. Nevertheless, it is sufficient for the reader to assume that the vector spaces
are rather simple and, for example, built of basic instrument parameters, such as onset
time, pitch, loudness, and duration. In the symbolic score space S, we will typically
use E for onset time (German “Einsatzzeit”), H for pitch (“Tonhöhe”), L for loudness
(“Lautstärke”), and D for duration (“Dauer”). The corresponding lowercase symbols will
be used for the performance space P .

10 Chapter 2. Background

When referring to a specific point in S, the symbol X will typically be used; the
performance vector field at X will be named Ts(X).

2.3.2 An Infinitesimal View on Expression
The precise description of a musical performance poses major difficulties. On the one
hand, expression is a multi-layered semiotic phenomenon. That is, expression extends
from surface parameters to more hidden structures that reveal the scores analytical depth
structure, for example. We do not deal with this complex problem here, because on the
other hand, the surface expressiveness is in-decomposable in general, i.e., it is typically
not possible to separate expressive shaping of onsets (agogics) from duration (articula-
tion), loudness (dynamics), or pitch (intonation). For example, the Chopin rubato makes
it impossible to recover a single tempo curve, because the agogical structure depends
on pitch when chords are slightly arpeggiated, and the right-hand melody onsets are lo-
cally deformed against the left hand accompaniment. One therefore needs a language that
copes with this intrinsic intertwining of parameters. In traditional musicology, perfor-
mance theory has never developed an adequate conceptualisation beyond fuzzy common
language descriptions, although (Adorno, 1963) promoted an infinitesimal view of per-
formance, termed micro-logic and based upon the insight that performance deals with the
infinite interpolation of shaping parameters. This deficiency is typically reflected in the
feuilletonistic music criticism and has to date prevented a truly scientific musicological
performance theory. More specifically, inverse performance theory is far beyond musico-
logical concepts, because the reconstruction of system parameters of a given performance
would require a precise definition of the performance data and the system set-up. Because
not even a performance theory based upon score analysis is available, such a system de-
scription remains out of reach of traditional musicology. However, in computer-aided per-
formance research, system descriptions, which would enable inverse performance theory,
have been proposed (Sundberg, 1991; Todd, 1992).

We should remark on the concept of expression, because its meaning is ambiguous.
If we attempt to analyse expression, this regards not the psychological perception of a
performance by humans. This aspect is a legitimate one, but it touches a category that re-
lates the performed music to human categorisations in terms of emotional response. Such
a perspective is dealt with, for example, by Honing (1992) and Langner et al. (2000). In
contrast, we regard expression as a rhetorically shaped transfer of structural score con-
tents by means of the deformation mapping of symbolic data into a physical parameter
space. The psychological implications are not the subject of this perspective; it is a purely
mathematical description of this mapping, not of the emotional correlates.

2.3.3 Performance Transformations
Before getting into general performance transformations, let us have a look at the sym-
bolic, musical time E, which is associated with the physical time e. Let us suppose that
the performance transformation ℘

E → e (2.1)

2.3. Theory of Music Performance 11

is an invertible C1 (continuously differentiable) function e = ℘(E). Then the tempo curve
associated with ℘ can be defined as

T =
(

d℘

dE

)−1

[Beats/sec] . (2.2)

If we know the physical time of the start time e0 = ℘(E0), then the transformation ℘ is
the integral

℘(E) = e0 +
∫ E

E0

1/T. (2.3)

Above concept of having a transformation ℘ for tempo can be generalised for an
arbitrary number of musical parameters. Suppose that we are given the composition C
of sound events in a score space S (for example R{E,H, L, D}). Each element X ∈ C
is transformed into a physical sound event x = ℘(X). The C1 transformation ℘ can be
described by performance vector fields which generalise the situation studied above for
tempo. Consider the diagonal constant vector field ∆ on CPerformed:

∆(x) = ∆ = (1, . . . , 1) (2.4)

for all x ∈ CPerformed. Then, the performance field Ts(X) is the inverse image of the
∆ field, as denoted in figure 2.1:

Ts(X) = J(℘)−1(X)(∆), (2.5)

where J(℘) is the Jacobian matrix at X

J(℘) =
(

∂xi

∂Xj

)∣∣∣∣xi=e,h,l,d

Xj=E,H,L,D

(X). (2.6)

2.3.4 Inverse Performance
The theory of inverse performance has been addressed in (Mazzola, 1995). It deals with
reconstruction of performance characteristics from a given score and its performance(s).
In (Müller and Mazzola, 2003b) a first step to inverse performance calculation was given:
the calculation of performance fields from a given performance. The theory has been re-
alised in a software module called the EspressoRubette. Basically, the problem can be split
into two parts: first, the problem of matching symbolic and performance events, which has
been extensively discussed in literature (Dannenberg, 1984; Vercoe, 1984; Puckette and
Lippe, 1992; Heijink et al., 2000). Second, the calculation of the performance fields after
matching has been performed is based on the calculation of local basis vectors, which
are then used to calculate the Jacobian matrix for each score-performance event pair. The
performance field vectors are then used for the calculation of an interpolated performance
vector field at arbitrary resolution. The resulting performance field can then be used for
vector field visualisation or for the comparison to other performance fields that have been
calculated using a different performance, which can be seen as an effective method for
performance calculation.

12 Chapter 2. Background

Figure 2.1: The performance transformation ℘ from a score space S to a performance
space P may be described by the performance vector field Ts, and the diagonal field
∆.

2.4 Denotators and Forms
This section gives an overview of the universal data model of Denotators and Forms,
which will be used to define our view on gestures in chapter 3. The model can be seen as
a bridging interface between modern mathematics, programming theory, and systematic
concept construction: first, Denotators and Forms are algebraic structures, the Denotator
system shares properties of a mathematical category (for an introduction to category the-
ory refer to (Asperti and Longo, 1991)). Second, the concepts of Denotators and Forms
share the idea of object-oriented programming, such as abstraction and data-hiding. Third,
Denotators and Forms are very explicit elementary signs in the semiotic sense, and allow
for the construction of concept spaces.

For a full account and a further formal treatment of Denotators refer to (Mazzola,
2002c, chapter 6), for a semiotic approach refer to (Mazzola, 1999).

2.4.1 Forms
A Form is a named hierarchical or circular space, and a Denotator is a substance point
residing in that space. Thus, a Denotator always comes with its corresponding Form. The
general definition of a form is written as:

FormName −→ FormType(Coordinator). (2.7)

Since we deal with named spaces, every form must have its unique name
(FormName). To allow the definition of arbitrary hierarchical and circular spaces, dif-
ferent compound types (FormType) exist. The compound types define the structure of
the Form’s co-ordinator.

Limit. Limits include the definition of Cartesian products of the forms defined in the co-
ordinator list. The co-ordinator is an ordered list, or an “n-tuple” of elements, of
the n factor Forms.

2.4. Denotators and Forms 13

Colimit. Colimits are disjoint unions of several object collections. In other words, the
substance of a Colimit Denotator is a single Denotator selected from one of the
given co-ordinators. The co-ordinator is an ordered list of n Forms of the collection.

Powerset. Powersets are sets of objects of a certain kind, which is given by its co-
ordinator Form. Thus, they are not ordered.

Synonymy. With Synonymy we can rename a certain form given by the co-ordinator
Form.

At the leaves of a form hierarchy, we have forms of type Simple, which allow the
definition of basic types given in the form co-ordinator. The most commonly used basic
types are STRING (the set of character strings), BOOLEAN (the set BIT = {0, 1}), IN-
TEGER (the set Z = {0,±1,±2,±3, . . .} of integers, and FLOAT (the set R of decimal
numbers).

Let us illustrate how a data-structure for a simplistic musical score can be defined
using above concepts. First, a score is a set of notes:

Score −→ Power(Note). (2.8)

Then, a note consists of four parameters, onset time E, pitch H , loudness L, and duration
D:

Note −→ Limit(E,H, L, D).

Finally, we can define the four simple types:

E −→ Simple(FLOAT)

H −→ Simple(INTEGER)

L −→ Simple(STRING)

D −→ Simple(FLOAT).

Figure 2.2 illustrates this example Form by giving a graphical representation.

2.4.2 Denotators
Once we have a given form (referenced to by its name) we can define a denotator in the
following way:

DenotatorName : Address FormName(Coordinates). (2.9)

Again, the DenotatorName is a unique identifier as a reference to the Denotator. How-
ever, the Denotator names are of secondary importance only. Denotators can be anony-
mous, they can be referenced (and thus distinguished) to by their co-ordinates only. This
is necessary when dealing with large numbers of Denotators of the same Form, such as
the notes in a score.

14 Chapter 2. Background

Score

Powerset

Note

Limit

FLOAT

Simple Simple Simple Simple

INTEGER STRING FLOAT

E H L D

Form name

Type

Co-ordinator Form

Figure 2.2: The simplistic Score Form in graphical representation.

The address can be any space in the category used in the specific concept architec-
ture. Often this is an algebraic module M . In our context, we mostly deal with topological
spaces, such as the unit interval I = [0, 1] ∈ R or the zero address 0 = {0} ∈ R. The
address concept is an important generalisation in the sense that variable addresses enrich
the expressiveness of Denotators: the address carries additional information on how the
Denotator has to be interpreted. We can see a Denotator as a “point” in a space (its Form)
that is not a fixed one, but may vary as a function of an entire parameter system. Most
commonly, we are dealing with zero-addressed Denotators, we then just write

DenotatorName FormName(Coordinates) (2.10)

thereby omitting the zero address. As we shall see in chapter 3, I-addressed Denotators, so
that the “point” parameter is a real number 0 ≤ λ ≤ 1, will be used to define Denotators
of parametric curves.

Depending on the type of the Form F of a given Denotator f the co-ordinates have
a specific definition, which is also reflected by the notation:

Limit. If the co-ordinator of F consists of a list of Forms F1, . . . , Fn, we define the co-
ordinates of f to be any sequence f1, . . . , fn of Denotators with forms F1, . . . , Fn:

f = fName F (f1, . . . , fn)

with

f1 = f1Name F1(f1Coordinates)
. . .

fn = fnName Fn(fnCoordinates).

2.4. Denotators and Forms 15

Colimit. For the colimit, with a given co-ordinator F1, . . . , Fn, we define the co-
ordinates of f as being any Denotator fi of Form Fi:

f = fName F (fi)

with
fi = fiName Fi(fiCoordinates)

for index i = 1, . . . , n.

Powerset. For the powerset, with a given co-ordinator FP , the co-ordinates of f are
defined as a finite set S = {f1, . . . , fn} of Denotators, all having the same Form
FP :

f = fName F ({f1, . . . , fn})

with
fk = fkName FP (fkCoordinates)

for k = 1, . . . , n. Usually, the curly set brackets are omitted in this notation, and
we simply write:

f = fName F (f1, . . . , fn).

Synonymy. If the type is synonymy, and the Form F ’s co-ordinator is FS , i.e., F −→
Syn(FS), we define the co-ordinates of f as being any Denotator fS of Form FS :

f = fName F (fS)

with
fS = fSName FS(fSCoordinates).

Simple. If the type of F is simple, the co-ordinates of f are directly defined by its value:

f = fName F (fV alue)

With above definitions, we can now explicitly write down an example score for the
Score Form defined in the example above:

myScore Score({myNote1,myNote2})
myNote1 Note(1.0, 60, ”ff”, 1.0)
myNote2 Note(2.0, 62, ”fff”, 2.5).

This example illustrates how values of the simple types (E, H , L, D) are implicitly inte-
grated into the co-ordinates of the Note Form. This is mainly done for practical reasons
since it allows for a more compact notation.

16 Chapter 2. Background

2.5 Digital Sound Synthesis
In this section, an introduction to sound synthesis in general and background on different
sound synthesis techniques is given. We shall particularly focus on techniques that apply
for real musical instruments, and how gestural parameters can help to control the syn-
thesised sound. We will further present the physical modelling software Modalys. Sound
synthesis is a fairly broad field and an excellent introduction and reference can be found
in (Roads, 1996), for an introduction to digital sound production refer to (Müller, 1998).

2.5.1 Synthesis Basics
Before the 1950s, sound synthesis was exclusively achieved in the analogue domain:
analogue electronic signals were for instance generated trough oscillating vacuum and
gas tubes and then modified using analogue filter circuits. The unique sounds of those
devices has kept them alive to present, and they are still widely used among sound en-
gineers and musicians. Later, the vacuum and gas tubes were replaced with analogue
semiconductor-based circuitry. However, with the rapid developments in computer tech-
nology and in Digital Signal Processing (DSP) we can observe a considerable success of
digital synthesis methods over the past decades. Nowadays, digital frequency modulation
and wavetable synthesisers are integrated in virtually any personal computer that comes
with a sound card. From the viewpoint of digital sound processing, a digital synthesiser
can be seen as a unit generator, which takes a number of sample streams and control sig-
nals as input, and produces a number of sample streams as output. A sample is the basic
unit of a discrete, digital signal. Some of those digital sound synthesis methods mimic the
circuitry of their analogue counterpart, while others have been developed in the digital
domain only and do not have an analogue pendant.

Before looking at different synthesis methods, it is very important to think about the
goals to be achieved: do we want to synthesise existing instruments (either physical or
electrical), or do we want to create a completely original sound, or do we even want to
create ambient sounds that do not have instrument character? Sometimes it is desirable to
have one synthesis method for a broad range of sounds and sound colours, in other cases
there is a very specific application, for instance if we just wanted to synthesise the sounds
of a wooden flute. Typically, different synthesis methods apply just for certain classes of
problems, and there is no “one method fits it all” solution.

Another crucial issue is how the synthesis process can be controlled: most synthesis
methods offer a large parameter space, but only a small subset of that space leads to
acceptable results. A possibility is to provide a number of parameter pre-sets, which are
designed for specific sounds – a technique used in many commercial synthesisers. Most
synthesisers can be controlled trough the Musical Instrument Digital Interface (MIDI),
and native synthesiser parameters can be set using vendor-specific MIDI messages. At
this point, and with respect to this thesis, we raise the question, how gestural concepts
and parameters can be incorporated into a certain synthesis method. As we shall point
out in section 3.1, MIDI can be seen as a very simple gestural interface: the concepts of
“Note on”, “Note off” and in particular “Velocity” model a virtual performer playing on a

2.5. Digital Sound Synthesis 17

virtual keyboard. While this model is a good starting point, the interface for more complex
gestural models needs to be improved. For instance, in (Laczko, 2003) a gestural interface
for piano mechanics coupled to physically modelled strings was realised. We can expect
that incorporating gestural parameters into synthesis methods will lead to more realistic
sound synthesis. As an example we can take a gesture consisting of a whole phrase, i.e.,
a number of notes: synthesis of phrases is one of the big challenges in this field, and will
become more important in the years to come.

2.5.2 Synthesis Methods

Today, there exists a large number of different approaches to sound synthesis. In addition,
many commercial synthesisers incorporate more than one method, or come with hybrid
approaches; and in most cases additional digital effects, such as reverberation, chorus, or
echoes, can be appended to the synthesis output. We will give short descriptions of the
most prominent synthesis methods, for details, the reader may refer to dedicated literature
given in the general references.

Wavetable Synthesis

The basic idea of wavetable synthesis (Bristow-Johnson, 1996) is to use existing sound
material (the wavetables) as a starting point, and then to create convincing simulations
of acoustical instruments. In its early forms, fixed-size wavetables were pitch-shifted and
then just looped, or sometimes even one-shot signals were played. Today, often multi-
ple wavetables are used, and they are shaped with individual envelopes to create a time-
varying signal. Wavetable synthesis is very well suited for acoustical instruments, but it
is often too complex to synthesise instruments with time variable timbres.

Subtractive Synthesis

Subtractive synthesis starts out with a basis waveform, usually a periodic signal rich in
partials, which is then filtered to achieve a usable timbre. Typically, the basis waveform
and the filters both are modulated. Subtractive synthesis is well suited for the synthesis of
original sounds, but it is hard to create accurate acoustic instrument simulations.

Additive Synthesis

Additive synthesis can be seen as the opposite to subtractive synthesis: simple sounds are
combined to create more complex ones. Any periodic sound can be created by combining
multiple sine waves (at different amplitudes, frequencies, and phases), and thus additive
synthesis is one of the most versatile synthesis methods. The problem is that combining
many sine waves, as required for real instruments, is very time consuming. It is mostly
used in analysis – re-synthesis contexts.

18 Chapter 2. Background

Frequency Modulation Synthesis

Frequency modulation (FM) synthesis, first presented by Chowning (1973), makes use of
the fact, that relatively rich spectra can be created by modulating the frequency of a sine
oscillator by another. Often multiple oscillators are cascaded or coupled to create even
more interesting sounds. FM synthesis is very easy to implement, but it is hard, or almost
impossible, to predict the resulting sound of a determined configuration. It is therefore
well suited for the synthesis of original sounds.

Physical Modelling

The term physical modelling synthesis is used for a group of synthesis methods that phys-
ically model musical instruments, or at least parts of instruments. For instance, we can
build a mathematical model of the four strings of a violin and the resonance body, and then
simulate the oscillations of the strings and the interaction with the resonance body. The
resulting equations, typically differential equations, are normally cumbersome to solve
and numerical approaches require a large amount of processing power. Nevertheless, with
the increasing processing power of today’s computing devices, physical modelling has
become popular and it is well suited for wind and string instruments.

From our viewpoint, physical modelling has another importance: since there is a
physical model of an instrument, it is possible to extend the model and incorporate gesture
parameters as well.

2.5.3 Modalys
Modalys, formerly known as Mosaic (Morrison and Adrien, 1993), is a software package
developed at IRCAM, which allows the design of virtual instruments based on simple
physical objects such as strings, metal plates, tubes, plectra, reeds, and hammers. The
users constructs an instrument and the defines how it will be played. Then, the resulting
sound can be synthesised by using a physical modelling method called modal synthesis.
Modal synthesis models a vibrating object by a bank of damped harmonic oscillators
which are excited by an external stimulus. The frequencies and dampings of the oscillators
are determined by the geometry and material properties of the object.

Since the user has the ability to design instruments based on simple objects, the
software is particularly well suited for the integration of gestural concepts, such as piano
mechanics and similar.

2.6. Human Hand Models 19

2.6 Human Hand Models
The mechanical complexity of the human hand is higher than any other part of the human
body. The hand is able to perform fine motor manipulations and powerful work alike,
and many dedicated parts co-operate in an highly optimised interplay to form a power-
ful union. Information on the anatomical units of the hand is found in (Putz and Pabst,
2001), and in detail in (Chase, 1990). The professional playing of musical instruments,
and the piano in particular, puts demands on the hand unlike those of any other everyday
or occupational human activity.

2.6.1 Hand Anatomy
The base of the palm consists of a number of small carpal bones (figure 2.3). The motions
of these bones are mainly related to the flexion and abduction of the wrist. The shape of the
trapezium, the carpal that articulates with the base of the thumb, has an enormous effect on
the motion flexibility of the thumb. The remaining body of the palm is composed of four
long bones called the metacarpals forming the base of each finger. They are connected
to the carpals trough the carpo metacarpal (CMC) joints. The metacarpals for fingers 2
(index) and 3 (middle) are fixed, while the metacarpals for fingers 4 (ring) and 5 (pinky)
are flexible in a small range. The metacarpal bone for the thumb is connected to the
trapezium and is far more mobile than the others.

Each finger is composed of three additional bones, the proximal, medial, and distal
phalanges (except for the thumb, which has no medial phalanx). The joint between the
metacarpals and the proximal phalanges is the metacarpal phalangeal (MCP) joint, the
next joint is the proximal interphalangeal (PIP) joint, and the last joint is the distal inter-
phalangeal (DIP) joint. Except for the thumb, the MCP joints are more mobile than the
PIP and DIP joints, which are just hinge joints. The CMC joint of the thumb makes it the
most complex unit of the hand: the articular surfaces of this joint are both saddle shaped,
and a loose, but strong, articular capsule joins the bones. Therefore the joint has an axis
for flexion and extension as well as an axis for abduction and adduction. The looseness of
the joint also allows for a small degree of passive rotary movement in the thumb. Putting
all together, the hand has 27 Degrees of Freedom (DOF): four for each finger (three for
flexion and extension, one for abduction and adduction), except for the thumb which has
five DOF, leaving six DOF for the rotation and translation of the wrist.

2.6.2 Hand Models in Anatomy and Biomechanics
Beyond the field of computer science, important work has been done in anatomy and
biomechanics. For example, in (Wagner, 1988) the hand size and joint mobility of profes-
sional pianists (127 male and 111 female) was studied. The work investigates in variability
of hand sizes and of hand mobility, and discusses the tendency for greater mobility in pi-
anists than in non-musicians. It concludes with the possibilities for practically using a
biomechanical hand profile for the assessment of the manual aptitude of a pianist, and for
using the available data for keyboard design.

20 Chapter 2. Background

Distal
Phalanges

Medial
Phalanges

Proximal
Phalanges

Metacarpals

Carpals

Ulna

Carpo
Metacarpal
Joint (CMC)

Trapezium

Metacarpal
Phalangeal
Joint (MCP)

Inter-
phalangeal
Joint (IP)

Proximal
Interphalangeal
Joint (PIP)

Distal
Interphalangeal
Joint (DIP)

Radius

5

4

3
2

1

Figure 2.3: Skeleton of the human hand with annotated bones, joints, and finger num-
bers.

In (Buchholz et al., 1992) statistically-based anthropometry describing the kinemat-
ics of the human hand is collected. Then, an attempt is made to model this anthropometry
by means of hand measurements, so it may be predicted non-invasively. The availability
of anthropometric data is extremely valuable for modelling computer-based hand-models.

2.6.3 Hand Models in Computer Graphics

In face of the importance of our hands in daily life, but probably due to their immense
complexity, human hand models have not received much attention in computer graph-
ics. Only recently, realistic and sophisticated hand models have been developed (Albrecht
et al., 2003; Bray et al., 2004) and many details are still work in progress. The availability
of such models opens the doors to many applications, ranging from teaching and prac-

2.7. The Distributed Rubato Platform 21

tising sign language (McDonald et al., 2001), or for teaching other manual skills, for in-
stance music performance, which is a part of this thesis. Further, hand models are needed
for interactive grasping in virtual environments, where visual feedback is required, and in
simulation systems, e.g, for surgery planning. Finally, for realistic close-ups in computer
graphics movies and computer games hand models with a high level of details and natural
movements are desired.

Like most articulated figures, the human hand can be modelled as a collection of ar-
ticulated rigid bodies connected by joints with one or more degrees of rotational freedom
(Badler et al., 1993, 1999). Albrecht et al. (2003) presented a hand model with under-
lying anatomical structure and muscle contraction based animation control. The muscle
contraction values are converted into values for a hybrid model, where pseudo muscles di-
rectly control the rotation of bones based on anatomical data and mechanical laws, while
geometric muscles deform the skin tissue using a mass-spring system. Unfortunately, the
computational cost of such models is still prohibitive for most real-time applications.

Hand models for playing musical instruments have also been presented. In (Kim
et al., 2003) a system for the animation of the human hand playing violin was presented.
The system consists of a neural network to control hand movement, and makes use of an
optimisation method to generate examples for the neural network training. The musical
decision for the correct finger use to press a string is made by best first search. Similarly,
ElKoura and Singh (2003) presented a virtual guitar player with focus on correct string
fingering for the guitar. They described a data driven algorithm to add sympathetic finger
motion to arbitrarily animated hands. In addition a procedural algorithm generates the
motion of the the fretting hand to play a given musical sequence on the guitar. What both
models (or systems, respectively) have in common, is that they operate on a very low level
of motion, higher level motion structures with respect to gesture and music have mostly
been ignored.

As we shall see throughout this thesis, our work can be seen as a pre-stage to hand
models in the computer graphics domain: our approach first considers musical structures
and gestures, and then synthesises motion curves of finger tips, with the goal to correctly
play the instrument from a musically and anatomically viewpoint. The resulting curves
can then be fed into an arbitrary hand model, where other issues such as finger-joint
motion, skin tissue generation, etc. are dealt with.

2.7 The Distributed Rubato Platform
Distributed Rubato (Müller, 2002) is a music research platform and is derived from Clas-
sic Rubato 1 (Mazzola and Zahorka, 1994a), which was originally developed on the
NEXTSTEP platform, and has been ported to Mac OS X.2 Distributed Rubato can be
defined as a system of autonomous components called Rubettes with a unified commu-
nication interface. The Rubettes communicate trough that interface using a well-defined

1Sometimes, just “Rubato” is used for the same application. Here we use “Classic Rubato” to clearly distin-
guish from the Distributed Rubato platform.

2Classic Rubato is available for download at http://www.rubato.org.

22 Chapter 2. Background

and well-structured language. The type of application is not defined by the system itself,
but by the Rubettes that are used to solve a certain problem. Thus, Distributed Rubato
is not restricted to handle musical content. For instance, it has been used to process data
delivered by geographic information systems (Rüetschi, 2001).

In contrast to Classic Rubato, which was written in Objective C and was restricted to
the NeXT Platform, Distributed Rubato has been completely rewritten in Java, leading to
a high degree of platform independence. Obviously this implies that the original Objective
C code could not be used anymore, at least not directly. Nevertheless, we believed that the
true value in Classic Rubato was in its methodologies and the implemented algorithms,
which are usually ported from one language to another quite quickly. Observe that the
terminology of “Rubettes” has been kept due to the similarity to their ancestors in Classic
Rubato.

Rubettes communicate with each other using Java Remote Method Invocation (Java
RMI) interface, the Common Object Request Broker Architecture (CORBA) or a similar
remote object technology. Thus, they need not reside on the same machine – they can do
their work on the computer of your neighbour, or on the server next to your office. The
Internet makes it possible that they can even be distributed around the globe. Rubettes
share a common language, which is a unified data representation and communication
scheme: information exchange is exclusively based on the universal data model of Forms
and Denotators (section 2.4). Again, Forms define named hierarchical spaces and Deno-
tators are the points, or the substance in those spaces. This is a concept close to the one
of XML, and in fact, data represented in XML can be translated to Forms and Denotators
and vice versa. However, in contrast to XML, Forms and Denotators are directly related
to algebraic structures. Thus they are available for algebraic operations in many cases.

Whether Rubettes are instantiated locally or on a remote machine is almost invisible
to the user. Therefore, it becomes easy to move time- and memory-consuming tasks to
another machine, where the needed resources are available.

The Distributed Rubato Framework provides the basic functionality that Rubettes
need for operation. It can roughly be categorized as follows:

Distributed Rubato System Classes. They define the core classes that are needed to im-
plement Rubettes and to launch the Distributed Rubato system. It further contains
the communication framework which provides the seamless integration of remote
Rubette objects.

Distributed Rubato Foundation Classes. This group contains classes that provides Ru-
bettes with basic functionality for operation. This includes a large mathematics
package with support for module calculus, arithmetics, matrices and linear algebra,
parametric curves, and for logic-geometric operations on Denotators and Forms.

Rubette Repository. The Rubette Repository contains the Rubettes that have been im-
plemented and that are ready for use. It also contains special Rubettes that are re-
quired for the operation of the whole system, such as an information agents, or
visualisation and user interface modules.

2.8. Soundium 2 23

Observe that the foundation classes are kept as general as possible. Application spe-
cific code is left to the Rubette implementations. Nevertheless, there are very general
Rubettes that are not related to a particular application. Let us give two examples of such
Rubettes. The first is the InfoRubette, which provides information about the Distributed
Rubato infrastructure on a given machine. This particularly includes the information on
what other Rubettes are available on that machine. Thus the InfoRubette must be instanti-
ated on any machine where Distributed Rubato is running; otherwise communication with
the outside world would be impossible. The second example is the PrimavistaBrowser
(Mazzola and Göller, 2002), a Rubette very central to Distributed Rubato since it is re-
sponsible for the user interface of all interactive applications. It manages all multimedia
representation and manipulation tasks and is able to display data in 3D – a necessity for
its use in immersive environments such as caves. Other Rubettes do not provide user in-
terfaces. They communicate with the browser trough the standard Rubette interface and
provide the interactive data represented as forms and denotators. This mechanism is also
used for the communication between several browsers, allowing direct collaboration of
several users.

2.8 Soundium 2
Soundium 2 (Schubiger-Banz and Müller, 2003) brings together different areas of com-
puter science in a unique multimedia system. Two main motivations were at the beginning
of Soundium 2: first, the quest for a framework, which allows the user to test new ideas in
audio processing and visualisation with minimal overhead. The realisation of new ideas
requires a programmer-friendly framework with a well-designed programming interface,
so the programmer can focus on the problem to be solved rather than struggling with the
complex underlying system structure. Second, the system should be suited for interactive
multimedia live performances (figure 2.4). Typical requirements behind this goal are short
latencies and response times, real-time capabilities for audio-processing, and failure-free
operation. The current client-server architecture in combination with data flow networks,
signal processing, 3D graphics, versioned global state, and an advanced Graphical User
Interface (GUI), manage to match these goals.

Many of the concepts of Soundium 2 are well-known, the system incorporates fea-
tures that have been available in real-time audio-processing systems, such as the Max
family (Pukette, 2002), a visual programming system for signal processing, including
an extension for video processing (Matsuda and Rai, 2000). Another example is Super-
Collider (McCartney, 2002) a computer music programming language with integrated
processing and process description.

2.8.1 System Architecture
Figure 2.5 depicts the overall architecture of Soundium 2. Basically, Soundium 2 is based
on a multi-tier client/server architecture with one client controlling a cluster of servers
called “engines”. The motivation for this separation is twofold: the first motivation is

24 Chapter 2. Background

Figure 2.4: Live video projections produced by Soundium 2.

code complexity and code maintenance and the second is timing. The engines should
handle all timing sensitive operations while keeping their code complexity small. All
complex operations should run on the client, which may or may not control the engines in
real-time. This allows us to rapidly develop and fine-tune individual engines for specific
tasks such as 3D rendering or audio processing while performing more complex tasks like
global-state and GUI management in the client.

The lowest architectural level is represented by specialised hardware (hardware
level) such as video projectors, MIDI equipment, or environmental sensors. All these de-
vices are controlled by individual engines (engine level) which are optimized for a specific
task. Each engine holds a part of the global dataflow network state which is manipulated
through an Remote Procedure Call (RPC) interface. This RPC interface is mainly used
by the client (soundium level) to configure and parameterize the engines. Only the client
holds the entire global system state composed of the per-engine dataflow networks as well
as the system wide state modification history. The client also renders a multi-user graph-
ical user interface (GUI level) that can be accessed via the Remote Frame Buffer (RFB)
protocol (Richardson and Wood, 1998) over the network for collaborative performances.

Graphical User Interface

The Soundium 2 graphical user interface allows interactive inspection and manipulation
of the system state as well as editing SL1 code. Figure 2.6 shows a screenshot of the GUI
with a selection of user interface elements. The system state represents the union of all
dataflow networks on each engine as a graph. SL1 scripting is used for modifications of

2.8. Soundium 2 25

CUMULUS SOUNDSERVER DECKLIGHT

MIDI

AUDIO

VGA

CLIENT

EMP/RPC

VNC/TCP

GUI LEVEL

SOUNDIUM
LEVEL

ENGINE
LEVEL

HARDWARE
LEVEL

Figure 2.5: Overview of the Soundium 2 architecture.

SL1 code. The revision tree holds the trace of all state changes in the system and allows
arbitrary jumps between system states. The revision tree can also be seen as a multi-level
redo/undo tree. Node parameters can either be modified through dedicated GUI elements
or associated with hardware devices such as MIDI controllers.

Client Side Scripting

The global system state (the union of the per-engine dataflow networks) is versioned and
stored as a revision tree. Every state manipulation is saved in the revision tree and it
is thus possible to rollback to any previous state and starting a new branch from there.
Even forward propagation of state changes is supported if the changes are non-conflicting
with later revisions of that state. The integration of versioning in a multimedia system
ensures that no artwork is lost and that new artwork can be easily evolved from existing
work. The storage format is called Soundium Language 1 (SL1), a full-fledged imperative
programming language. Besides encoding the system state, SL1 is also used for client side
scripting, GUI customization, and performance preparation.

Automatic Software Configuration

Resource classification is the foundation for the automatic software configuration (Schu-
biger, 2002) capability used in Soundium 2. By classification we understand the process
of determining resource properties such as content type as well as extracting features like
beat positions. A modular scheme allows the addition of resource transformations (such
as format conversion), which are automatically aggregated based on their semantics in
order to construct high-level transformations. Software configuration relies on a formal

26 Chapter 2. Background

Revision Tree
SL1 Scripting

MIDI ControllerMIDI Controller

System State

Params

Revision Tree

Figure 2.6: The Soundium 2 graphical user interface.

ontology, which is planned to include meta information beside the current media related
information such as music style or mood.

Resource Handling

The management of resources such as 3D models, textures, and audio clips is entirely
HTTP (Hyper Text Transfer Protocol) based. In addition to flat file resources, a proprietary
extended resource format (XRS) allows association of SL1 code with media files, thereby
transforming passive resources into active objects that can react to events like resource
loading.

The Remote Procedure Call Interface

The RPC interface is extremely simple, basically allowing the manipulation of the en-
gine’s data-flow network. The calls comprise creation and removal of nodes as well as
edges and reading and writing of parameters. Every call takes a timestamp argument oc-
curring in the future, which is used by the engine to properly schedule the execution of the
call. Two auxiliary calls allow obtaining static engine information (supported node types
and data formats) and querying the current engine time.

2.8. Soundium 2 27

Engine

The Soundium 2 engine is a C++ framework based on a processing graph of building
blocks (the nodes) that communicate which each other (along the graph edges). It has
been designed with two main goals in mind: First, provide efficient real-time processing
facilities to different media types. Second, provide a highly abstracted programming inter-
face for the building blocks that allows non-experts to write their own signal- and media
processing code.

The first goal has been achieved by implementing a system that makes use of exten-
sive multithreading. The building blocks are automatically assigned to schedulers, which
handle processing characteristics of a specific media type. Data-flow analysis determines
the execution order inside the different scheduling groups. The building blocks communi-
cate trough connected ports allowing arbitrary data types. Inter-scheduler communication
is automatically synchronised.

The application of rigorous object-oriented methods in C++ almost completely
hides scheduling and synchronisation issues from programmers of building blocks. For
instance, ports can be accessed like normal variables. To date, building blocks for se-
quencing, audio signal processing, MIDI I/O, parameterized OpenGL rendering graphs,
and OpenGL Performer have been implemented.

28 Chapter 2. Background

Chapter 3

Gesture Curves and Gesture
Spaces

This chapter deals in detail with our model of musical gestures where gestures are repre-
sented by high-dimensional parametric curves residing in arbitrary symbolic or physical
spaces. Having the same model for different spaces or realities was one of our core mo-
tivations since this opens the path to a unified theory of dealing with gestures in general.
The model has first been presented by Mazzola (2002b), and its evolution has been pub-
lished in (Müller, 2002, 2003; Mazzola and Müller, 2003).

We will first introduce our concept of gesture curves residing in gesture spaces and
define corresponding transformations between them. The concept of gesture spaces is de-
rived from the concepts of score and performance spaces and the performance transforma-
tion ℘, well known from performance theory (section 2.3). Will will also introduce lifted
pairs of spaces, which express the vertical relationship between score (or performance)
spaces and gesture spaces.

The second section deals with operations on basic gesture curves and will show
how the composition of such curves can be used to create gesture curves (and therefore
gestures) at the next higher conceptual level. While we are not able to present a complete
grammar of musical gestures in this work, we believe that providing a basic alphabet and
appropriate composition mechanisms will eventually yield the basis of such a grammar.

The key to computational methods for dealing with gesture curves is given in sec-
tions 3.3 and 3.4. The theory deals with the algorithmic construction and manipulation of
gesture curves. We shall particularly focus on the construction of gesture curves from mu-
sical scores and performance scores and the constraint-based shaping of physical curves
with respect to a kinematics-based hand model for keyboard instruments.

29

30 Chapter 3. Gesture Curves and Gesture Spaces

3.1 A Model for Musical Gestures
Let us first define a mathematical construct that is able to represent a musical gesture (or
any gesture):

Definition 3.1 Let F
F −→ Limit(F1, . . . , Fn), (3.1)

be the Gesture Form over the parameter Forms Fi:

Fi −→ Simple(R), i = 1, . . . , n. (3.2)

Work over the topos Top@ instead of Mod@, where Top is the category of topolog-
ical spaces together with continuous maps, e.g., I = [0, 1] ⊂ R, Top(I, R) = I@R =
{f : I → R, continuous}.

A gesture G is a Denotator in F at address I , i.e.

G : I F (γ) (3.3)

with γ ∈ I@F . Thus, the parametric gesture curve γ maps from I to Space(F):

γ : I → Space(F) = Rn (3.4)

with Space(F) = ⊕n
i=1Space(Fi) = Rn.

This definition was chosen for the following reasons: a) parametric curves are open
to computational methods; b) we can define operations on curves, e.g., products, or con-
catenation of curves; and c) the curves are well-suited for physical models, where move-
ments of points in a physical space are modelled. Observe that in contrast to dealing with
musical scores, using topos Top@ implies topological and not algebraic structures in this
framework.

We clearly point out that the curve parameter t is not necessarily related to time (be
it a symbolic or physical time). Gesture curves can reside in spaces where time does not
appear at all. However, a gesture representing a movement in the physical domain, such
as movement of a finger, implicitly involves physical time, which then is also a function
of t.

As an illustration, figure 3.1 shows a gesture curve in a simple vector space F =
(e, a, b, c). Here, we have the typical set-up that the time parameter e (physical onset time)
is also a function of t. In an abstract context, the parameters a, b, and c are arbitrary. In
contrast, in a physical context, they would be replaced by space dimensions (i.e., x, y, z),
or other physical parameters (e.g., forces or velocities), or any appropriate combination.

Figure 3.2 shows a symbolic gesture curve G, which models a (monophonic) ges-
ture of a keyboard-like instrument. The curve is closely modelled after MIDI concepts
(“Note on”, “Note off”, and “Velocity”, the derivative of the figure’s position coordinate).
We shall later see that this simple model can be used to construct more complex and
polyphonic gesture curves for keyboard instruments.

3.1. A Model for Musical Gestures 31

e

a x(t1) = (e1,a1,b1,c1)

x(t)

x(t0) = (e0,a0,b0,c0)b

c

Figure 3.1: A gesture curve in a generic setup. The curve is parameterised in t ∈ [0, 1].

Figure 3.2: A symbolic gesture curve for a MIDI keyboard instrument.

3.1.1 Music Notation and Gestures: A Thesis

So far, we have not dealt with the relationship of musical scores and musical gestures,
and our model of gestures, i.e., the gesture curves, in particular. Musical scores provide
an abstract way of writing down musical compositions. Musical gestures, on the other
hand, exist in a vast range from an abstract, mental space to very explicit and concrete
movements in a physical space, such as curves denoting the position of finger tips playing
an instrument. In order to link the two realities, Mazzola (2002b) has raised the following
thesis:

Thesis 3.1 Symbols in a musical score (e.g., the notes) can be seen as “frozen” gestures.

This thesis is supported by the observation, that today’s music notation originated
from neumes. As already mentioned in section 2.2 neumes are an early form of music
notation (Parrish, 1957), and the word “neuma” is actually the Greek word for “hint”.
Symbolic music notation can therefore be seen as a highly abstract way of writing down
gestures (refer to figure 3.3 for a simplified schema showing the increasing abstraction
from neumes to today’s notation).

32 Chapter 3. Gesture Curves and Gesture Spaces

Figure 3.3: Evolution of music notation: From neumes (a) via square notation (b) to
music notation as it is used today (c).

3.1.2 Lifted Pairs of Spaces and Gesture Transformations

The relationship given in the previous section can now be put together with the relation-
ship given by a score S, a possible performance P , and a performance transformation ℘
between the two, as we know it from performance theory. This combination is presented
in figure 3.4: the lower part of the figure shows the score space S and the performance
space P containing note and tone events, starting at the position of the black dots and
having the duration of the length of the line. The performance transformation is now de-
noted as ℘Score. Analogous, a symbolic gesture space and a physical gesture space have
been added in the upper part of the figure, and, between the two, a gesture transformation
℘Gesture. The complete situation yields the following definition:

Definition 3.2 Let S be a musical score space and P a performance space, with a per-
formance transformation ℘Score. Then the symbolic gesture space SS together with S,
and the physical gesture space PP together with P are called lifted pairs of spaces. The
vertical operations are called “freezing” when transforming from SS to S (and from PP
to P , respectively), and “thawing” when transforming from S to SS (and from P to PP).

In other words, the “freezing” and “thawing” operations express the vertical relationships
between score (or performance) spaces and symbolic (or physical) gesture spaces. We
shall see later, how these operations can be realised.

3.2. Operations on Gesture Curves 33

Figure 3.4: Gesture spaces containing the symbolic gesture curve G and the physical
gesture curve g, their inter-relationships, and the relationship to the corresponding
instrument spaces.

The physical gesture curve g = ℘Gesture(G), on the top right in figure 3.4 repre-
sents the transformed symbolic gesture curve G. Here, the parameters are of geometric
nature, such as angles between finger segments, and motion parameters, such as velocity
and acceleration vectors of the finger tips or of the ankles. Those parameters are repre-
sented by the figure’s α and β axes.

3.2 Operations on Gesture Curves
An important issue is the question of how complex gestures can be built from simpler
ones. This section defines basic mathematical operations on gesture curves. These opera-
tions can be seen as a vocabulary of useful manipulations and transformations of curves
which will be needed for the construction and shaping processes in the sections later on.

3.2.1 Constant Gestures
First, we start out with the most basic of all possible gestures, the constant gesture Gconst:

Gconst : I F (γconst)

34 Chapter 3. Gesture Curves and Gesture Spaces

with γconst(t) = c = const ∈ Space(F) for all t ∈ I .

3.2.2 Add and Scale
The space I@F of gestures becomes a real vector space by defining add and scale oper-
ations. Assume two gesture curves γ1, γ2 ∈ Space(F). Then we can define the addition
of γ1 and γ2:

(γ1 + γ2)(t) = γ1(t) + γ2(t) (3.5)

The scaling of a gesture curve γ ∈ Space(F) by a constant r ∈ R can be defined as

(r · γ)(t) = r · γ(t) (3.6)

As a special case we define the shift operation as an addition of a gesture curve γ ∈
Space(F) with a constant gesture curve γconst ∈ Space(F):

(γ + γconst)(t) = γ(t) + γconst (3.7)

3.2.3 Reverse Operation (Switch)
Gestures can be reversed, this is achieved by reversing the ordering of the parameter
t ∈ I: Let ρ : I → I : t 7→ 1 − t, then γρ is the reverse gesture curve of γ, with
γρ = γ · ρ : Iρ

ρ→ Iγ
γ→ Space(F).

3.2.4 Concatenation
The concatenation of two gesture curves γ1, γ2 : I → Space(F) provides the founda-
tion for building more complex gestures out of simpler ones. Condition for the ability to
concatenate γ1 and γ2 is that γ1(1) = γ2(0). Then the concatenation is defined as:

γ(t) = γ1(t) ∝ γ2(t) =
{

γ1(2t) if 0 ≤ t ≤ 0.5
γ2(2t− 1) if 0.5 < t ≤ 1 (3.8)

3.2.5 Product
Let γ ∈ Space(F) and δ ∈ Space(G), with F −→ Limit(F1 . . . Fn), and G −→
Limit(G1 . . . Gm). Then we can define the product gesture curve γ × δ ∈ I@(F ×G)

γ × δ(t) = (γ(t), δ(t)) ∈ Rn+m (3.9)

with F ×G −→ Limit(F1 . . . Fn, G1 . . . Gm).

3.2.6 Top Space
Finally, a gesture of gestures can be constructed by using the top space of the real vector
space FI := I@F , FGestures −→ Simple(FI). Then, the ‘gesture curve’ γ : I →
Space(FGestures) is a parameterised curve of gestures.

3.3. Initial Construction of Gesture Curves 35

3.3 Initial Construction of Gesture Curves
Before discussing the construction of complex, constrained gesture curves (typically in
the physical domain), in this section, we deal with the “thawing” operation of simple,
unconstrained symbolic gesture curves. The curves are considered unconstrained because
we are able to construct them in a symbolic reality where for instance hand anatomy, or
physical laws are of no importance. The curves built by that method live on their own
rights in a symbolic reality.

For the discussion of the “thawing” operation, consider the piano-roll like scores in
figure 3.5. Pitch is given by the vertical axis, onset time by the horizontal axis. The four
events reside inside the onset boundaries ε0 to ε5. The lower score has been annotated
with fingering information, which we assume to be given, either by manual definition or
by an automatic estimation (Parncutt, 1995).

One of the main problems with symbolic gesture curves is the issue that fingers have
to move at infinite speed in some cases: for instance at ε3 the second event for finger 2
ends and at the same time as finger 3 has to start playing the third event. In addition, at ε4

finger 3 still playing the third event, or more precisely, is just about to release the key, and
has to start playing the fourth event. Thus, there is in fact no time left for moving the finger
from event three to event four. This problem has been solved by parameterising onset time
for each symbolic finger, i.e., onset time E becomes a function of the curve parameter t:
During the transition between the two events, the position co-ordinate increases, while
onset time remains constant. Thus, in a symbolic gesture curve, fingers are allowed to
move at “infinite” speed.

For the construction of the curve, each finger is handled separately. First, the curve
parameter t is divided by the number of events for each finger. Then, each event is divided
into three intervals, one for the transition before the event takes place, one for the event
itself, and one for the transition after the event. Finally, cubic interpolation is applied for
each subinterval. The interpolation type is however not part of the intrinsic definition of a
symbolic gesture curve.

Figure 3.6 (a) shows the symbolic gesture curve for finger 2. Each axis is drawn
separately in function of curve parameter t. The semi-transparent vertical bar denotes the
area where the actual event takes place. As we just have seen, onset time E also exists
in the gesture space, but separated for each finger. The remaining instrument parameters
H , L, etc., are replaced by pseudo space co-ordinates X , Y , Z, which define the co-
ordinate system for a virtual keyboard. For the moment, we do not care about the units
or the values of those space co-ordinates, it is enough to assume that they represent some
geometric 3D space. The effective mapping functions from symbolic score parameters to a
physical instrument space will be given in section 3.4.4. X2 is the position on the keyboard
and corresponds to pitch, Y2 is the position above the keyboard and tells whether key is
pressed or not, and the derivative Y ′

2 = dY2/dt contains information about the speed at
which the key is pressed or released, respectively. This speed corresponds to the loudness
of a certain event. Note that the Z position (depth on the keyboard, thus defining a white
or a black key) is omitted in the figure. Its construction is analogous to the one of X .
Figure 3.6 (b) shows the symbolic gesture curve for finger 3. Indicated by the dashed

36 Chapter 3. Gesture Curves and Gesture Spaces

H

C3
G3
C#4

C3
G3
C#4

a) "Score"

H

ε0 ε1 ε2 ε3 ε5ε4

ε0 ε1 ε2 ε3 ε5ε4

b) "Score + Fingering"

E

E

3
3

2

3

Figure 3.5: A symbolic score, without (a), and with (b) annotated fingering informa-
tion. Horizontal axis denotes onset time, vertical axis pitch.

square is the region where onset time E remains constant since finger 3 has to move from
event 3 to event 4 at infinite speed.

3.4 Constrained Shaping of Gesture Curves
The previous section has dealt with the construction of unconstrained gesture curves. The
method can be used for the construction of symbolic gesture curves based on a musical
score. However, the attempt to construct physical gesture curves from performance scores
imposes new requirements. For instance, hand anatomy has to be taken into account: we
have to deal with maximum distances between finger tips, or overlapping of hand parts
has to be avoided. Further, we need to take care of dynamic facts: fingers can not move
at infinite speed anymore, their acceleration and velocities are limited, depending on the
maximum forces and the finger’s mass, according to Newton’s law.

In this section, we will deal with the problem of the construction and the shap-
ing of physical gesture curves, which then can be represented by virtual performers or
by body parts of virtual performers. Unfortunately, we do not know anything about a
possible direct transformation ℘Gesture which was given in figure 3.4. Thus, instead of
defining ℘Gesture, we begin with a given symbolic gesture curve, which can for instance
be obtained directly from a given MIDI file, and then “freeze” the curve (figure 3.7, step
1), which yields events in the score space. From here, ℘Score can be applied (figure 3.7,
step 2), as it has been done in the past (Mazzola, 2002c): ℘Score is defined by perfor-
mance vector fields, which are numeric results delivered by a number of analyses (e.g.

3.4. Constrained Shaping of Gesture Curves 37

Figure 3.6: Independent symbolic gesture curve for fingers 2 (a) and 3 (b), with curve
parameter t running from 0 to 1 on the horizontal axis.

38 Chapter 3. Gesture Curves and Gesture Spaces

Figure 3.7: The performance of a symbolic gesture curve. Instead of applying the
direct transformation ℘Gesture, the gesture curve G is first “frozen” (step 1), then
℘Score is applied (step 2), and finally the physical gesture curve g is “thawed” from
the performance score.

melodic, harmonic, motivic). The process results in physical sound events in the perfor-
mance space. What remains, is to “thaw” those events (figure 3.7, step 3), resulting in the
physical gesture curve we are looking for. Thus, this section deals with the rather com-
plex “thawing” operation in the physical domain, i.e., the construction of physical gesture
curves.

As we shall see now, the concepts of construction of symbolic gesture curves will
also be helpful in the physical domain: assume the score in figure 3.5 to be a score that
has already been performed, e.g., some MIDI recording. Then, the application of the
curve construction algorithms from the former sections yields the symbolic curves given
in figure 3.6. However, the construction algorithm will be slightly modified in order to
make the application of anatomic constraints easier.

As a next step we will define a constrained hand model whose constraints can be
written as a number of equalities and inequalities. These constraints will have to be solved
for every segment in the score. By making use of Sturm’s theorem for cubic splines,
there is a general approach for finding solutions. The large number of parameters and the
resulting polynoms of up to the 12th degree, however, make it almost impossible to find a
symbolic solution to the problem as our experiments with mathematics packages such as

3.4. Constrained Shaping of Gesture Curves 39

Mathematica have shown. Thus, it is helpful to split the problem in two parts: first, solve
the anatomic constraints and then solve the physical constraints by shaping the time axis
using the Sturm theorem for the one-dimensional case.

Splitting the problem is supported by an observation that comes from rehearsal:
when a pianist rehearses a sequence of a piece, he first starts playing the sequence slowly
until the finger movements are correct and internalised. Then he can begin playing the
sequence towards the required speed – without elementary changes to the geometric shape
of the gesture.

3.4.1 Curve Construction Revisited
A first approach would construct multiple curves according to section 3.3 and then further
subdivide and reshape the curves where required. However, it is preferable to follow the
approach of starting out with basic, well-defined curve segments, which then can be joined
to build more complex curves (in the sense of section 3.2) for the following two reasons:
first, unconstrained construction results in curves with individual time segments. When it
comes to implementation, numerous mappings between t and time have to be calculated,
making the reshaping process inefficient. Second, and more important, is the point of view
that every gesture is related to other gestures in a constrained situation. This is not only
true in the physical domain, but also in symbolic domain: for instance, left hand and right
hand playing in piano performance can never be completely independent. Left-hand and
right-hand gestures are always mentally and physically linked.

The above observations allow us to revise the construction mechanism for symbolic
gesture curves based on a score. Again, each finger is handled separately, but in contrast to
section 3.3, for each finger, the onset axis E is divided into the same number of segments.
Initially, the mapping from curve parameter t to onset time E is kept identical for each
finger. Thus, we have full control of a finger’s motion in an interval [t0, t1] with respect
to the other fingers’ motions. Again, the transition before the event, the event itself, and
the transition after the event are handled separately. In addition, and in contrast to the
former construction method, segments unrelated to a musical event will appear. An ex-
ample would be a chord of three notes, where two fingers are not involved in playing, but
nevertheless need to be in correct position. To summarise, the types of appearing score
segments can be categorised into None, Attack, Hold, and Release. The individual seg-
ments are created according to the rules given in figure 3.8. At the beginning and at the
end of the score Hold segments are added, these ensure enough room for gestures before
and after the score’s events are involved. Figure 3.9 shows the (unshaped) symbolic ges-
ture curves that have been constructed according to above mechanisms. For each finger,
the curve is divided into 17 segments. The type of segments are denoted by ‘N’ for None,
‘A’ for Attack, ‘H’ for Hold, and ‘R’ for Release.

3.4.2 Defining the Virtual Keyboard
Obviously, the dimensions and structure of the keyboard are reflected in some of the con-
straints to be defined. Defining a virtual keyboard is fairly easy, since all dimensions are

40 Chapter 3. Gesture Curves and Gesture Spaces

A

a) Individual Event b) Consecutive Events

c) Common Start d) Common End

H R

H

H H

R

R R

A H

A H NR A H R

e) Shifted Start f) Shifted End

A AH H

Figure 3.8: Score segmentation rules for different event combinations. Horizontal axis
denotes onset time, vertical axis denotes pitch. The uppercase letters denote the seg-
ment type: N for None, A for Attack, H for Hold, and R for Release.

well-defined in standards (DIN8996, 1985). Figure 3.10 shows a top and a front view of
some keys of a typical keyboard with annotated dimensions. The co-ordinate origin is
placed in front of the C3 key, and the co-ordinate set-up corresponds to the co-ordinate
system given for symbolic gesture curves in earlier sections: the x co-ordinate corre-
sponds to pitch, the y co-ordinate to the position above the keys, and the (negative) z
co-ordinate to the position on the key itself.

3.4.3 Defining a Constrained Hand Model
The next step is to define a hand model which is well-suited for piano performance. The
hand model in our approach focuses on the movements of the finger tips and of the hand
root, since these movements are the most essential ones in a piano performance. The re-
sulting motion curves can be used to animate a general hand model, such as the one in
(Bray et al., 2004). Therefore, and as mentioned earlier, our model can be seen as a com-
putational pre-stage, whose function is to focus on the gestures, which represent not only
a determined performance, but also playing style and technique. All other issues will be
covered by the general hand model. These include appropriate handling and representa-
tion of the hand skeleton, the muscles, and the skin.

Thus, for each hand we define six gesture curves, γroot(t) for the hand root, and
γi(t), i = 1, . . . , 5 for each finger. This situation is illustrated in Figure 3.11. The collec-

3.4. Constrained Shaping of Gesture Curves 41

Figure 3.9: Dependent symbolic gesture curve for fingers 2 (a) and 3 (b), with curve
parameter t running from 0 to 1 on the horizontal axis. The uppercase letters denote
the segment type: N for None, A for Attack, H for Hold, and R for Release.

42 Chapter 3. Gesture Curves and Gesture Spaces

C3

x
23.6

11.5

x

y

z

12
0

70
25

15

Figure 3.10: Top and front view of standard keyboard layout with co-ordinate origin
at C3 and key dimensions after DIN8996.

x

y

γroot(t)

γ1(t) γ2(t)

γ3(t)

γ4(t)

γ5(t)

z

Figure 3.11: Hand model with annotated positions for gesture curves γroot(t) and
γ1, . . . , γ5

3.4. Constrained Shaping of Gesture Curves 43

tion
γ = (γroot, γ1, . . . , γ5) (3.10)

is the curve for the whole hand, and we are looking for the evaluation of γ at a parameter
value t:

γ(t) = (γroot(t), γ1(t), . . . , γ5(t)) (3.11)

For each gesture curve γroot(t), γ1(t), . . . γ5(t) we use separate co-ordinate functions
xi(t), yi(t), zi(t) and a common onset time function e(t):

γroot(t) = (xroot(t), yroot(t), zroot(t), e(t)) (3.12)
γi(t) = (xi(t), yi(t), zi(t), e(t)), i = 1, . . . , 5 (3.13)

The according space functions (space co-ordinates without onset time function) are de-
fined as:

γSpace
root (t) = (xroot(t), yroot(t), zroot(t)) (3.14)

γSpace
i (t) = (xi(t), yi(t), zi(t)), i = 1, . . . , 5 (3.15)

Our approach then uses cubic polynomial functions as gesture co-ordinates, i.e., 76 coef-
ficient variables:

xi(t) = xi,3t
3 + xi,2t

2 + xi,1t + xi,0 (3.16)
yi(t) = yi,3t

3 + yi,2t
2 + yi,1t + yi,0 (3.17)

zi(t) = zi,3t
3 + zi,2t

2 + zi,1t + zi,0 (3.18)
e(t) = e3t

3 + e2t
2 + e1t + e0 (3.19)

Above equations define the movement of the hand for a given segment in the score.
The next step is to define all required constraints. The equations together with the con-
straints will result in a number of equalities and inequalities. The goal then is to find
solutions for the 76 coefficient variables.

Boundary Conditions

The first group of constraints are boundary conditions for all five fingers. These include
a) positional equations, and b) velocity equations that are given by the velocity of a note
to be played. The positional equations are given as constants at the beginning and the end
of the curve for each finger i = 1, . . . , 5:

γi(0) = γi,0 (3.20)
γi(1) = γi,1 (3.21)

The velocity equations need to be defined only for those fingers involved in a attack
or a release process. We start out with derivatives with respect to the curve parameter t:

DγSpace
i =

dγSpace
i

dt

De =
de

dt

44 Chapter 3. Gesture Curves and Gesture Spaces

Consequently, the velocity equations are

DγSpace
i (0)
De(0)

= DγSpace
i,0 (3.22)

DγSpace
i (1)
De(1)

= DγSpace
i,1 (3.23)

where DγSpace
i,0 and DγSpace

i,1 are given border velocity parameters at t = 0 and t = 1,
respectively.

Boundary Inequalities

The second group of constraints are boundary inequalities that result from the hand model:
we want the hand root and the finger tips to remain inside given boundaries in order to
make sure that the hand remains in a valid anatomic state. First, we define boundary boxes
for the hand root and each finger. It is noteworthy to say that using simple boxes does not
reflect all possible states of a real hand. But defining the boxes small enough, i.e., as a
subset of all reachable positions, can be considered as being appropriate for a realistic
piano performance. The hand model and the 6 bounding boxes are illustrated in figure
3.12. The size of the boxes is only given as qualitative dimensions.

Assume that we have defined Boxroot for the hand root, and Boxi for each finger
i = 1, . . . , 5. First, we can define the boundary conditions for the hand root as an absolute
box position:

γroot ∈ Boxroot (3.24)

Then, we define the boundary conditions for the thumb and the index finger as rela-
tive box positions to the hand root:

γSpace
1 − γSpace

root ∈ Box1 (3.25)

γSpace
2 − γSpace

root ∈ Box2 (3.26)

Finally, we define the boundary conditions for the remaining fingers as relative box
positions to the index finger, and subsequently to each other. This makes sure that we can
avoid collisions between finger tips:

γSpace
3 − γSpace

2 ∈ Box3 (3.27)

γSpace
4 − γSpace

3 ∈ Box4 (3.28)

γSpace
5 − γSpace

4 ∈ Box5 (3.29)

In addition, we need to assure the non-intersection of the thumb with the other fin-
gers. Therefore consider the two finger bases b2 and b5, as illustrated in figure 3.13. Sup-
pose that we have two constant difference vectors d2 and d5 such that:

b2 = γSpace
root + d2

b5 = γSpace
root + d5

3.4. Constrained Shaping of Gesture Curves 45

Figure 3.12: Hand model with annotated boundary boxes for hand root and fingers.

x

y

b5d5

b2

d2

γroot(t)

γ1(t) γ2(t)

γ3(t)

γ4(t)

γ5(t)

z

Figure 3.13: Hand model with annotated base positions b2 and b5.

Then, for each finger i = 2, 3, 4, 5 we require that the triple of vectors

γSpace
i − b5, b2 − b5 = d2 − d5, γSpace

1 − b5

has a constant orientation for all t, i.e.:

det(γSpace
i − b5, d2 − d5, γ

Space
1 − b5) > 0 (3.30)

Dynamic Inequalities

The last set of inequalities deal with a different point of physical reality: dynamics. The
movements of the hand root and the finger tips (figure 3.14) have to comply with Newton’s

46 Chapter 3. Gesture Curves and Gesture Spaces

x

y
m3

d2γ3Space/de2

z

Figure 3.14: Hand model with finger mass for finger 3 and force vector.

law for every 0 ≤ t ≤ 1 to reflect human force limitations when acting upon finger
masses:

mroot ·

∣∣∣∣∣d2γSpace
root

de(t)2

∣∣∣∣∣ < Kroot (3.31)

mi ·

∣∣∣∣∣d2γSpace
i

de(t)2

∣∣∣∣∣ < Ki (3.32)

Observe that in this first approximation we use point masses mroot and mi, and the con-
stants Kroot and Ki are upper force limits given by physiological constraints. By applying
the chain rule twice, above inequalities can be rewritten as

(De(t))2 ·
∣∣∣D2γSpace

root

∣∣∣2 + (D2e(t))2 ·
∣∣∣DγSpace

root

∣∣∣2 −
2 ·De(t) ·D2e(t) ·

〈
DγSpace

root , D2γSpace
root

〉
<

(
(De(t))3 · Kroot

mroot

)2

(3.33)

and, for i ∈ 1, . . . , 5

(De(t))2 ·
∣∣∣D2γSpace

i

∣∣∣2 + (D2e(t))2 ·
∣∣∣DγSpace

i

∣∣∣2 −
2 ·De(t) ·D2e(t) ·

〈
DγSpace

i , D2γSpace
i

〉
<

(
(De(t))3 · Ki

mi

)2

(3.34)

3.4. Constrained Shaping of Gesture Curves 47

Summary

Let us shortly recapitulate the previous sections: We are given a number of boundary
conditions and polynomial inequalities of the given geometric, anatomic and dynamic
constraints. For each segment in the segmented score, the coefficient variables of the poly-
nomial functions for the motion of the hand root and the finger tips need to be calculated
in order to satisfy the determined constraints. The resulting cubic spline curves represent
constrained motion curves. The next section deals with the specification of the boundary
values defined in this section: they need to be correlated to the given hand model, to the
keyboard model, and to the segmented score.

3.4.4 Boundary Value Mapping

We have defined a number of constraint equalities in the previous section in symbolic
form. In this section we show how the constraints are matched to the keyboard model and
to the segmented score to be performed.

First, consider a score that was segmented into n segments according to section
3.4.1. Each segment i = 1 . . . n contains information for all five fingers, and for all fingers
involved in playing an event, i.e., the finger’s state is Attack, Hold, or Release, we need
to map the score parameters to the physical space of the piano keyboard model given in
section 3.4.2. As we have seen earlier, pitch will be mapped to the x-co-ordinate, and the
velocity will be mapped to the derivative of y-co-ordinate, denoting the velocity of the
key being pressed or released. The absolute mapping of the y-co-ordinate is given by the
position when a key is pressed, and of the finger’s rest position when after releasing the
key. Finally, the absolute mapping of the z-co-ordinate is not directly related to a certain
segment, but to anatomic constraints and to playing technique, it actually defines where
the key will be touched.

Generally, we have to distinguish between white and black keys. Therefore we de-
fine a Boolean function mapw(pitch) that is true when pitch refers to a white key, and
false when pitch refers to a black key:

mapw(pitch) =
{

true if (pitch mod 12) ∈ {0, 2, 4, 5, 6, 9, 11}
false otherwise (3.35)

(assuming that pitch corresponds to MIDI pitch with C3 = 60).

48 Chapter 3. Gesture Curves and Gesture Spaces

Pitch to X Mapping

For the pitch to x mapping, we define the function mapx(pitch):

mapx(pitch) = ww ·



7 · octave +



0.0 if key = 0
0.5 if key = 1
1.0 if key = 2
1.5 if key = 3
2.5 if key = 4
3.0 if key = 5
3.5 if key = 6
4.0 if key = 7
4.5 if key = 8
5.0 if key = 9
5.5 if key = 10
6.0 if key = 11



(3.36)

where ww is the width of one white key (23.6 mm), octave = pitch div 12−5, and key =
pitch mod 12. This mapping reflects the typical layout of a standard piano keyboard.

Pitch to Y Mapping

For the y mapping, we define two functions mapyr(pitch) and mapyp(pitch), the former
for a finger’s rest (i.e., the finger is above the keys, ready to move, or to press another key)
position, the latter for finger’s position when a key is pressed:

mapyr(pitch) =
{

hw + offsetwyr if mapw(pitch) = true
hb + offsetbyr otherwise (3.37)

and

mapyp(pitch) =
{

offsetwyp if mapw(pitch) = true
offsetbyp otherwise (3.38)

where hw and hb are the heights of a white key (15 mm) and of a black key (25 mm),
respectively. The constants offsetwyr, offsetbyr, offsetwyp, and offsetbyp reflect ab-
solute offsets in rest and pressed positions.

Pitch to Z Mapping

The mapping from pitch to the z co-ordinate consists of two components: first, we have
to consider again whether the key in question is white or black, this yields in a base offset
in negative z direction. Second, a constant offset specific for each finger is added in order
to reflect the hand’s anatomic shape. For instance, the middle finger presses a white key
not at the border (near z = 0), but closer to where the row of black keys start. In contrast,
the thumb typically presses closer to the border of the white keys. This model is open to
future extensions, for example one could more precisely define variable mappings to take
playing style into account.

3.4. Constrained Shaping of Gesture Curves 49

The mapping function mapz i(pitch) is defined for each finger i = 1 . . . 5 as fol-
lows:

mapz,i(pitch) =
{
−offsetwz,i if mapw(pitch) = true
−dw + db − offsetbz,i otherwise (3.39)

where dw and db are the depths of a white key (120 mm) and of a black key (70 mm). As
explained above, the offsets offsetwz,i and offsetbz,i are individual (positive) values
for each finger i = 1 . . . 5 that are added to the base offsets given by the key sizes.

Velocity to Y Mapping

Finally, we need to map MIDI velocity (loudness) to the speed of which the finger moves
when it is about to press a key. The mapping maps from the constant velocity at the
moment when the finger first touches the key with a constant scaling factor to an according
MIDI velocity. Any further interaction, such as the force that reacts back from the key to
the finger is not taken into account. One of the main problems is that MIDI velocity is
not an physical measure for loudness (e.g., decibel) – it is simply a numeric value (in the
standard case 0 . . . 127) and it is up to the dedicated MIDI device of how to interpret or
map this value to an output signal level, for instance. Here, we define the mapping as a
scaling with factor scalev from MIDI value to key speed:

mapdy(velocity) = scalev · velocity. (3.40)

Assigning the Mappings to Gesture Curves

After we have defined the mapping functions in the previous sections, they are ready to
be assigned to the boundary conditions given in section 3.4.3: the x, y, and z mappings
deliver boundary values for γi,0 (equation 3.20) and for γi,1 (equation 3.21). The velocity
mapping is used in the y component of the velocity equations 3.22 and 3.23.

3.4.5 A General Method for Solving the Inequalities

Section 3.4.3 concluded with a number of equalities and inequalities that need to be satis-
fied for the cubic curve segments given in equation 3.10. All of those curve segments are
of type

f(t) = f3t
3 + f2t

2 + f1t + f0. (3.41)

Again, consider a segmented score, as in the previous sections. For each segment,
we need to find the coefficients f3, f2, f1, and f0, according to the given segments. In
this section, we present a method based on Sturm’s theorem for cubic splines (Waerden,
1966, §79), that delivers symbolic (i.e., not numeric) solutions for the problem. The main
reason for finding symbolic solutions is to have the solutions in parameterised form ready
for implementation in a programming language.

50 Chapter 3. Gesture Curves and Gesture Spaces

Theorem 3.1 (Sturm Theorem) The number of different real roots of an polynomial
equation P (x) = 0 with real coefficients over an interval x ∈ [x0, x1], the endpoints
of which are not roots (P (x0) 6= 0 and P (x1) 6= 0), is equal to the difference between the
numbers of sign changes of the Sturm chains formed for the interval ends x0 and x1.

A Sturm chain is a series of Sturm functions P0, . . . , Pn and is constructed as fol-
lows: given a polynomial function P (x), write P0(x) ≡ P (x) and P1(x) ≡ P ′(x) and
define the Sturm functions by

Pn(x) = − (Pn−2(x)− Pn−1(x) ·Qn−2(x)) (3.42)

using Euclid’s division theorem. This yields the following chain of Sturm functions,

P0 = Q0P1 − P2

P1 = Q1P2 − P3

P2 = Q2P3 − P4

...
Pn−2 = Qn−2Pn−1 − Pn

known as a Sturm chain. The chain is terminated when a constant Pn(x) is obtained.

Applying the Sturm Theorem

Since all of our inequalities are polynomial inequalities of the form P (x) > 0 for
x ∈ [0 . . . 1] we can apply the Sturm theorem in order to guarantee that there is no root
for P (x) in the given interval. Therefore we build the Sturm chains for all inequalities
and require that the number of sign changes of the chains is equal at both interval ends.
This procedure leads to a number of equations that need to be solved for the appearing
coefficients in the cubic spline equations.

Unfortunately, constructing the Sturm chains for all inequalities, and in particular
for the one in equation 3.34, yields very large algebraic terms, and mathematics packages
such as Mathematica were not able to find symbolic solutions to the given problem as
a whole. However, the next section shows that the method is applicable in principle by
giving a solution for a simpler, one-dimensional case.

3.4.6 Solution of the One-Dimensional Case
In this section we shall give an example of the application of the Sturm theorem to
solve inequalities for a simple, one-dimensional case. In this case, we have a curve
G : [0, 1] → R2 which describes the change of pitch without intermission, to be per-
formed by determined finger. The curve G(t) = (eG(t), hG) has two components: the
curve eG, measuring physical time, and the pitch curve hG, measuring physical pitch, as
represented by the horizontal distance between the keys of a keyboard. The frozen curve
G, as it is shown in figure 3.15, draws the change from pitch h1 = 0 to pitch h2 = 5

3.4. Constrained Shaping of Gesture Curves 51

e

h
h2=5

t=0 t=t1

t=t2 t=1

h1=0
e0=0 e2=2e1=1

Figure 3.15: “Frozen” gesture curve with changing pitch from h1 = 0 to h2 = 5.
Horizontal axis denotes onset time e, vertical axis denotes pitch h.

(think of a fourth leap from C to F), starting at time e0 = 0 for parameter t = 0, jumping
to h2 at time e1 = 1 for t = t1, arriving at pitch h2 at the same physical time e1 (!) for
parameter t = t2, and ending the performance at e2 = 2 for t = 1.

The “thawing” deformation is a new curve g : [0, 1] → R2 with g(t) = (eg, hg),
which complies with the Newton inequality

m
d2h

de2
< K,

where m is the finger’s mass, and where K is an upper limit given by the physiological
constraints of the performer. The “thawed” curve g is shown in figure 3.16. Evidently, the
finger cannot stay fixed on pitch h1 = 0, but has to jump off this position at a physical
time µ(e1−e0), 0 < µ < 1, after the start. The main point of the “thawing” calculation is
the position, where the jump begins until its ending on pitch h2 = 5. Denote this curve by
γ(t) = (e(t), h(t)) and suppose the curve parameter t ranges from t = 0 to t = 1, so we
have two boundary conditions h(0) = h1 = 0, h(1) = h2 = 5, e(0) = µ(e1 − e0) = µ,
and e(1) = e1 = 1. Then the Newton inequality becomes

d2h

dt2
· de

dt
− dh

dt
· d2e

dt2
<

(
de

dt

)3
K

m
, (3.43)

which means that this inequality must hold for all t ∈ [0, 1]. As already done previously,
we model our curves e(t), h(t) by cubic polynomials:

e(t) = e3t
3 + e2t

2 + e1t + e0

h(t) = h3t
3 + h2t

2 + h1t + h0,

where the boundary conditions were given above. After a normalisation of m,K to yield

52 Chapter 3. Gesture Curves and Gesture Spaces

e

h
h2

t=0 t=µt1

t=t2 t=1

h1 e0 e2e1µ(e1-e0)

Figure 3.16: “Thawed” gesture curve with changing pitch from h1 = 0 to h2 = 5.
Horizontal axis denotes onset time e, vertical axis denotes pitch h.

K/m = 1, inequality 3.43 reads as follows:

P (t) =− 2h2e1 + e3
1 + 2e2h1+

(−6h3e1 + 6e2e
2
1 + 6e3h1)t+

(−6h3e2 + 6e3h2 + 12e2
2e1 + 9e2e

2
1)t

2+

(8e3
2 + 36e3e2e1)t3+

(36e3e
2
2 + 27e2

3e1)t4+

54e2
3e2t

5 + 27e3
3t

6 > 0.

The Sturm theorem guarantees that no zero of polynomial P (x) occurs in the in-
terval [0, 1] if P (0), P (1) > 0, and if the associated Sturm chains (P (0), P ′(0), . . .),
(P (1), P ′(1), . . .) have the same number of signature changes. Recall that the Sturm
chains are successive Euclidean algorithms, starting with the division with remainder by
the derivative P ′, i.e., P (t) = A(t)P ′(t) + B(t).

The Sturm criterion amounts to the fulfilment of a number of polynomial inequali-
ties Si > 0, i = 1, . . . N , where the polynomials Si are functions of the curve coefficients
e3, . . . e0, h3, . . . h0 and the “jumping” coefficient µ, the latter being present from the
boundary conditions. One solution to our problem is found by common algorithms (e.g.,
using Mathematica) and yields e(t) = 5/8+ t/8+ t2/4, h(t) = −2t+7t2 with µ = 5/8.
Figure 3.17 shows a calculated plot of the curve, meaning that the finger first lowers its
pitch position and then leaps to the target pitch.

3.4.7 Separating Geometric and Physical Constraints

The previous sections have shown that solving the complete set of constraints using the
Sturm theorem imposes major practical problems. As mentioned earlier, an observation
on playing technique allows for a new approach in this situation: during rehearsal, a pi-
anist starts playing sequences of notes (for instance fast scales) slowly until the finger
movements are correct and internalised. As soon as this stage is reached, he or she can

3.5. Freezing Gesture Curves 53

0.2 0.4 0.6 0.8 1
e

-1

1

2

3

4

5
h

Figure 3.17: Computed plot of “thawed” curve from figure 3.16. Horizontal axis de-
notes onset time e, vertical axis denotes pitch h.

begin playing the sequence at increasing speeds until the required speed is required. Dur-
ing this process, the shape of the performed gestures is kept as far as possible since drastic
changes to the shape would interfere with the internalised movements. Thus, we may per-
form geometric shaping first, and the proceed with physical shaping without affecting the
first step.

Figure 3.18 shows the shaped, physical gesture curve for our example score after ge-
ometric shaping has been applied. Figure 3.19 shows the final curve after physical shaping
has been performed. The dashed circles show locations where the anticipated leaps from
the precedent keys take place.

3.5 Freezing Gesture Curves
While we have just dealt with the construction of symbolic gesture curves, which was de-
noted by the “thawing” operation in figure 3.4, let us add a remark on the reverse process,
the “freezing” of symbolic gesture curves. Since the symbolic gesture spaces are similar
to the “Note on”, “Note off”, and “Velocity” concepts offered by MIDI, the “freezing”
operation in the symbolic domain is easy when compared to the construction of a ges-
ture curve: It is basically the transformation of a MIDI file or a real-time MIDI input,
respectively, to an event space, for instance defined by E, H , L, and D (onset time, pitch,
loudness, and duration).

Important are possible applications of the “freezing” operation: they provide mech-
anisms for recording gestures from given performances. The most simple, but also the
most wide-spread use of such a mechanism is MIDI recording, resulting in a recorded
score. Further, the “freezing” operation provides a powerful mapping mechanism from
a gestural performance device space (e.g. a gesture tracker attached to a computer) to a
musical performance space (e.g. a synthesiser).

54 Chapter 3. Gesture Curves and Gesture Spaces

Figure 3.18: Physical gesture curve for fingers 2 (a) and 3 (b), after application of
geometric constraints. Curve parameter t is running from 0 to 1 on the horizontal axis.

3.5. Freezing Gesture Curves 55

Figure 3.19: Physical gesture curve for fingers 2 (a) and 3 (b), after application of
physical constraints. Curve parameter t is running from 0 to 1 on the horizontal axis.

56 Chapter 3. Gesture Curves and Gesture Spaces

Chapter 4

Implementation

The major part of the theory in chapter 3 has been implemented in a software module
called PerformanceRubette, which is by itself integrated into the Distributed Rubato Plat-
form (section 2.7). This chapter first gives an overview of the architecture of Distributed
Rubato. The overview will be kept short, for a full account refer to (Müller, 2002; Göller
and Milmeister, 2003). Then, the implementation details of several independent software
components which are used by the PerformanceRubette are given. The PerformanceRu-
bette itself is structured into several modules for computer-aided music performance. The
general structure comes from its ancestor, the PerformanceRubette of Classic Rubato. We
will show how the Rubette has been seamlessly extended with our concepts of musical
gestures. Finally, we will present implementation details which deal with the “freezing”
and “thawing” operations and the constraint-based shaping of gesture curves.

4.1 The Distributed Rubato Architecture

Distributed Rubato is the most current version of the Rubato music research platform.
While Classic Rubato, its original version, written in Objective C, has been a stand-alone
application, Distributed Rubato has been completely rewritten in Java. As the name im-
plies, Distributed Rubato is a Distributed System, the software can be run on multiple
machines that communicate with each other. Each machine can act both as a client and
as a server, therefore Distributed Rubato is well suited for establishing a Peer-to-Peer
(P2P) network. At the same time, users can still use Distributed Rubato as a single peer
application.

The actual functionality of Distributed Rubato is found in the Rubettes: those are
independent software components that implement and perform arbitrary problems and ap-
plications. Communication is established through a well-defined interface based on Forms
and Denotators (section 2.4). The Rubette itself does not need to care about communica-
tion details or explicit user interface issues, all that is needed is to implement the Rubette
interface provided by Distributed Rubato. An example for a typical Rubette would be the

57

58 Chapter 4. Implementation

MetroRubette, which performs metric analysis of a musical score: the Rubette provides
a Denotator containing descriptive information about itself, takes a score Denotator as
input, and delivers metric information as output.

The core of Distributed Rubato is constituted by a number of classes which are
required for control and communication. These classes are part of the Distributed Rubato
System Classes (DRSC). In addition there are packages and classes which are of general
use for most Rubettes (such as the matrix package, as we shall see later on). The collection
of these classes is called the Distributed Rubato Foundation Classes (DRFC).

Figure 4.1 gives an overview of the Distributed Rubato architecture. From the view-
point of a Rubette (or, a Rubette implementer, respectively), the Foundation Classes are
more important than the System Classes, because they provide shared functionality in a
very generic manner. The biggest package inside the Foundation Classes is the mathemat-
ics package which contains a number of sub-packages:

Module calculus. Provides classes that support and implement algebraic modules and
module elements. These classes are essential for the implementation of the Form
and Denotator theory (chapter 2.4).

Arithmetics. The arithmetics package contains classes for general arithmetic operations
and number theory. Observe that the Java Platform already provides a number of
classes for such operations, but for instance lacks support for rationales, or arith-
metic strings. Such (missing) features are implemented in the arithmetics package.

Matrices and linear algebra. This package provides classes for matrix operations. In
section 4.2.1 we shall give a detailed description of the matrix package.

Parametric curves. This package has been developed to support the concepts of gesture
curves given in chapter 3. At the same time, they provide very general and conve-
nient mechanisms for dealing with arbitrary parametric curves, so they are useful
for many other applications as well. Section 4.2.2 will present the package in detail.

Yoneda classes. The Yoneda package provides all classes and mechanisms for Forms and
Denotators. Since Denotators are used as the primary communication mechanism
between Rubettes, they are essential for the behaviour of the whole system.

In addition, the Foundation Classes contain a package for logic-geometric opera-
tions (LoGeo). These operations allow simple access to the inner structures and data of
Denotators. They further provide mechanisms to modify Denotators based on predicates.
Finally, the utility package contains a number of classes that do not fit in any of the pre-
vious packages. At typical class in the utility package is the MidiIO class, providing
functionality for reading and writing MIDI files.

4.2 Supporting Components
This section gives an detailed description of two packages which have been essential for
the realisation of the PerformanceRubette.

4.2. Supporting Components 59

R
ub

et
te

In
te

rfa
ce

C
om

m
un

ic
at

io
n

Fr
am

ew
or

k

Distributed Rubato System Classes

Rubette Repository

Distributed Rubato Foundation Classes

Mathematics Lo
gi

c-
G

eo
m

et
ric

O
pe

ra
tio

ns
 (L

oG
eo

)

U
til

ity
 C

la
ss

es

M
od

ul
e

C
al

cu
lu

s

Ar
ith

m
et

ic
s

M
at

rix
 /

Li
ne

ar
 A

lg
eb

ra

Pa
ra

m
et

ric
 C

ur
ve

Yo
ne

da
 C

la
ss

es
(F

or
m

s
/ D

en
ot

at
or

s

Figure 4.1: Block diagram of the Distributed Rubato architecture.

4.2.1 The Matrix Package
In order to implement matrix and linear algebra operations, we have implemented a rather
comprehensive matrix package (refer to figure 4.2 for the inheritance hierarchy). The
most notable difference to other Java matrix packages is the support for arbitrary coeffi-
cient types. The only requirement on coefficient types is that they are inherited from the
interface Coefficient, and need to satisfy algebraic ring properties, such as to provide
a zero element, a unit element, addition, and multiplication.

The interface Matrix by itself is inherited from Coefficient, the package there-
fore implicitly supports block matrices. Matrix declares the most common operations on
matrices, they can roughly be grouped into the following entities:

Coefficient access. Support for the most basic operations, such as obtaining or setting a
coefficient at a given row and column position. For faster numeric operations, direct
conversions from and to floating-point values are supported.

Sub-matrix access. Several methods for accessing (either getting or setting) a sub-matrix
of the whole matrix are provided.

Matrix layout. This group of methods contains functionality for the inquiry or modifica-
tion of the matrix’ structure. Row or columns can be removed, added, or appended.

Matrix operations. Support for a number of matrix operations. Among others, addition,
multiplication, calculation of the rank, the determinant, and the inverse matrix, are
found in this group.

60 Chapter 4. Implementation

Class

BlockMatrix

CCoefficientCMatrix

ZCoefficientZMatrix

ZpCoefficientZpMatrix

RCoefficientRMatrix

QCoefficientQMatrix

Interface

Comparable

Cloneable

Abstract Class

AbstractMatrix

Final Class extends
implements

java.lang org.rubato.math.matrix

Matrix

Coefficient

Figure 4.2: Matrix package inheritance hierarchy (the inheritance of classes from
java.lang.Object is omitted).

Block matrix operations. For block matrices, which can be of arbitrary depth, a number
of special operations are required. This typically includes inquiry about the hier-
archical structure of the block matrix, and flattening, i.e., conversion from a block
matrix to a conventional matrix.

The package defines a number of classes for specific coefficient types: ZMatrix
contains coefficients of type Z (i.e., integers), ZpMatrix contains coefficients of type
Z mod p. The class QMatrix supports coefficients which are of rational type. Finally,
RMatrix accepts floating-point values as coefficient type.

Since the defined classes in the matrix package are intended to be inherited from, a
special mechanism, making use of Java’s reflection interface, guarantees that the gener-
ated types are as close as possible to their arguments with respect to the inheritance tree.
For instance, if a class MidiEvent would be inherited from RMatrix, then the addition

4.2. Supporting Components 61

of two objects of type MidiEvent would result in another object of that type. In con-
trast, the result would be of type RMatrix as soon as one of the arguments was not of
type MidiEvent. Further help comes from AbstractMatrix which provides a generic
implementation for most matrix operations based on a few basic properties. This makes
it easy to inherit from one of above classes without having to rewrite everything from
scratch. Of course, sometimes optimised versions are required, this can easily be achieved
by overriding the methods provided by AbstractMatrix or one of its ancestors.

4.2.2 The Parameteric Curve Classes

The parametric curve package directly reflects the concepts of gesture curves presented
in chapter 3: an object of type Curve (refer to figure 4.3 for the inheritance and aggrega-
tion hierarchy of the curve package) is parameterised in an interval [t0, t1] and contains
a list of named co-ordinate axes (class Axis). Each axis is built of a number of non-
overlapping intervals (interface Interval), and the sequence of those intervals defines
the shape of the curve. There can be arbitrary interval types, the only requirement is that
they implement Interval, which contains just a few methods to be implemented:

public interface Interval extends Comparable {
public double get(double t);
public double getT0();
public double getT1();
public double getV0();
public double getV1();
public double getDV0();
public double getDV1();
public double setV0();
public double setV1();
public double setDV0();
public double setDV1();

}

�

The most important method is get(double t) which returns the interval’s value
for given parameter t, which must be between t0 and t1. The other methods to be imple-
mented are for accessing the border values v0 = v(t0) and v1 = v(t1), and its deriva-
tives dv0 = dv/dt|t0 and dv1 = dv/dt|t1 . Observe that the interval’s range can only be
initialised during construction and then remains immutable to assure consistency of the
interval sequence inside a given axis. The curve package comes with a number of existing
interval types:

ConstantInterval can be used as a constant segment, i.e., γconst(t) = c for all t ∈
[t0, t1]. Observe that this class does not support setting the derivatives dv0 and dv1.

62 Chapter 4. Implementation

Class

CubicInterval

BezierInterval

ConstantInterval

LinearInterval

Interface

Comparable

Abstract Class Final Class

CurveIterator

AxisIterator

extends
implements

java.lang

Iterator

java.util

org.rubato.math.curve

Interval

AbstractInterval

Curve

Axis

Figure 4.3: Curve package inheritance and aggregation hierarchies (the inheritance of
classes from java.lang.Object is omitted).

LinearInterval is used to construct linear segments, with γlinear(t) = at + b, where

a =
v1 − v0

t1 − t0

b =
v0t1 − v1t0

t1 − t0

Again, the class does not support setting the derivatives dv0 and dv1.

CubicInterval allows the definition of a cubic spline γcubic(t) = at3 + bt2 + ct + d,
given by its border values v0 and v1, and the first derivatives dv0 and dv1. The
parameters a, b, c, and d are given as:

4.2. Supporting Components 63

a =
dv1(t20 − 2t0t1 + t21) + dv0(t20 − 2t0t1 + t21)

t40 − 4t30t1 + 6t20t
2
1 − 4t0t31 − t41

+

−2t0v0 + 2t1v0 + 2t0v1 − 2t1v1

t40 − 4t30t1 + 6t20t
2
1 − 4t0t31 − t41

b =
−dv1(2t30 − 3t20t1 + t31)− dv0(t30 − 3t0t

2
1 + 2t31)

t40 − 4t30t1 + 6t20t
2
1 − 4t0t31 − t41

+

3t20v0 − 3t21v0 − 3t20v1 + 3t21v1

t40 − 4t30t1 + 6t20t
2
1 − 4t0t31 − t41

c =
−dv1t0(−t30 + 3t0t

2
1 − 2t31)− dv0t1(−2t30 + 3t20t1 − t31)

t40 − 4t30t1 + 6t20t
2
1 − 4t0t31 − t41

+

6t0t1(t0v0 − t1v0 − t0v1 + t1v1)
t40 − 4t30t1 + 6t20t

2
1 − 4t0t31 − t41

d =
−(dv1t

2
0t1 + dv0t0t

2
1)(t

2
0 − 2t0t1 + t21)

t40 − 4t30t1 + 6t20t
2
1 − 4t0t31 − t41

+

3t20t
2
1v0 − 4t0t

3
1v0 + t41v0 + t40v1 − 4t30t1v1 + 3t20t

2
1v1

t40 − 4t30t1 + 6t20t
2
1 − 4t0t31 − t41

BezierInterval is equivalent to CubicInterval but allows the use of two control
points c0 = dv0/3 + v0 and c1 = v1− dv1/3 instead of derivatives.

Interpolated Curve Access

While it is possible to access all axes and their segments individually through public
methods of the Curve and Axis classes, it is in most cases desirable to have a more
mathematical oriented access to curve objects, i.e. in most cases we would like to obtain
a vector containing the values for each axis at a given curve parameter t. Assume that we
have a instance curve of Curve, containing n axes. The first way to access the curve
values is supported by the method Curve.get(double t). For instance, we can write

// obtain curve data at t = 0.5
double t = 0.5
double[] v = curve.get(t);

// do something with v...

which would return a vector of dimension n, where n is the number of axes in the curve
object.

The main problem of this method is the computational cost when repeatedly call-
ing get(), because the interpolation mechanisms hidden in the Curve class require an
unavoidable amount of recalculation every time the method is called.

64 Chapter 4. Implementation

In such cases it is common habit in software engineering to adapt the concept of
iterators, which provide a mechanism for iteration through sequentially organised data.
The Java platform provides iterators through the Java Collections Framework. The curve
package implements the iterator concept in terms of the class CurveIterator, which
implements java.util.Iterator. The following example shows how curve data can
be accessed using iterators (again assuming that there is an object curve containing valid
data):

// split the curve interval into 5000 samples
double samples = 5000.0;

// obtain iterator for interval [0, 0.5] at given resolution
java.util.Iterator i = curve.iterator(0.0, 0.5, samples);

// loop from iterator start till end
while(i.hasNext()) {

// obtain value at current iterator position
// and increment iterator
double[] v= (double[])i.next();

// do something with v...
}

�

This code extract would be equivalent to subsequently calling curve.get(), with
the difference of being a lot faster because the pre-calculated interpolation values are
stored inside the iterator. Another advantage is that the obtained iterators can directly
be used to transfer curve data into other Java Collections containers, such as vectors, or
linked lists.

4.3 The PerformanceRubette
The PerformanceRubette is the central component where a large part of the theory of mu-
sical gestures, presented in chapter 3, has been implemented. A major design goal was to
integrate the theory into the existing theory of music performance. This theory had already
been implemented in the PerformanceRubette of Classic Rubato, but the implementation
lacks of two recent developments in performance theory. The first is the capability to
deal with arbitrary instrument parameter spaces, and the second is the missing support
for musical gestures. Below, we will give a short overview of the overall design of the
PerformanceRubette and then focus on how the support for complex instrument spaces
and musical gestures has been integrated.

Currently, the PerformanceRubette mainly serves as a testbed for thawing and freez-
ing of gesture curves. While the classes for music performance are present and build up

4.3. The PerformanceRubette 65

the essential skeleton of a fully functional new PerformanceRubette, the thorough imple-
mentation (and mainly porting work from the former Rubette) is not completed yet as it
is beyond the scope of this work, which focused on musical gestures.

4.3.1 Overall Design

The overall design of the PerformanceRubette strictly follows the concepts presented in
(Mazzola, 2002c, part VIII) and in particular in (Mazzola, 2002c, chapter 35). Figure 4.4
shows the resulting inheritance and aggregation hierarchies of the package.

From the operational viewpoint, the PerformanceRubette is fed with score data and
performance parameters in the Denotator format through the Rubette interface. The Ru-
bette itself does not need to care about the origin of the Denotators, typically they will be
provided by Distributed Rubato’s GUI (Graphical User Interface), called the Primavista
Browser (Göller, 2004), which is a Rubette by itself. The class PerformanceRubette
takes care of the communication to other Distributed Rubato components to the “outside”,
and performs construction and control of internal classes (as explained later) on the “in-
side”. Further it takes care of conversion of Denotators to the internal data formats. For
example, a musical score can be of very high complexity when being present in Denotator
format (Montiel Hernandez, 1999). The Denotator is then converted to an internal format,
in this case a list of events, which can be used by the other PerformanceRubette classes in
an efficient way.

At the core of the performance structure an object of type Performer (refer
to figure 4.5 (a) for a list of public methods of the Performer class) an associated
Instrument is found. The instrument has its dedicated implementation (with respect
to the instrument to be performed). In the case of figure 4.4, this situation is reflected by
the realised classes PianoPerformer and its associated instrument PianoInstrument.

Initially, the instantiated Performer object keeps a reference to its instrument,
which can be obtained by calling getInstrument(), and to the score to be processed,
which is accessible through getScore(). Then subsequent calls to applyOperator(),
with a specified operator and a list of weights, yield the hierarchical Stemma structure,
which has its root as an object reference to a performance score (class PS). The stemma
can be accessed by calling getStemma(). When the application of operators is finished,
the method perform() actually initiates the performance calculation. Finally, the re-
sulting performance score can be obtained by calling the method joinPerformance(),
which merges all calculated performance kernels together.

4.3.2 Support for Complex Instrument Spaces and Musical Gestures

While the functionality in the previous section basically reflects the functionality of Clas-
sic Rubato’s PerformanceRubette, the new PerformanceRubette has been extended to take
the developments of this work into account. The first extension is the support for com-
plex instrument spaces. The original Rubette supported the basic sound parameters E
(onset time), H (pitch), L (loudness), D (duration), G (glissando), and C (crescendo).

66 Chapter 4. Implementation

PianoInstrument

Operator

Weight

Interface

Rubette

Abstract Class Final Class extends
implements

org.rubato.base org.rubato.rubettes.performance

PS

PianoPerformer

PerformanceRubette

GPS

Class

Cell

Hierarchy

...

Instrument

Curve

Performer

LPS

Field

Figure 4.4: PerformanceRubette package inheritance and aggregation hierarchies (the
inheritance of classes from java.lang.Object is omitted).

4.4. Efficient Calculation and Shaping of Gesture Curves 67

Performer
getInstrument()
getScore()
getStemma()

joinScore()
joinPerformance()

applyOperator()

perform()
freeze()
thaw()

Instrument
getName()
getTopSpace()
getTopSpaceDim()

a) b)

Figure 4.5: Public methods of the Performer (a) and Instrument (b) classes.

This instrument space has been adequate for many applications, and in particular when
the resulting performance was used to generate a MIDI file to be sent to a synthesiser.

However, with the ability to directly control a physical modelling instrument, a fixed
parameter set is in many cases not sufficient. One may think of violin performance, where
additional sound parameters, e.g., vibrato, or plucked notes, are essential. In order to sup-
port this capability, the concept of an abstract performer – instrument pair (as already
mentioned above) has been introduced: the concrete implementations of specific instru-
ment types (with their associated instrument spaces) can fully be controlled by inheritance
from the Performer and Instrument classes. Basic properties of the Instrument

class (4.5 (b)) are its name (accessible through getName()), and its space. The method
getTopSpace() returns a named vector of the instrument space.

In addition two new methods for the support of musical gestures have been added
to the Performer class: freeze() takes as input a symbolic or physical gesture curve,
“freezes” it, and returns the corresponding code. On the other hand thaw() “thaws” a
symbolic or a performance score (including the shaping of the curve), and returns the
symbolic or physical gesture curve. The two methods directly reflect the concepts pre-
sented in section 3.1.2.

4.4 Efficient Calculation and Shaping of Gesture Curves

This sections describes the core functionality that has been implemented for “thawing”
gesture curves from given scores or performances. The procedure is the same for the
symbolic and for the physical domain, except that in the physical domain an additional
processing step performs the task of shaping the curve according to given physical con-
straints.

Central to the calculation of gesture curves is the Performer.thaw() method,
which controls the necessary processing steps and provides them with the given param-

68 Chapter 4. Implementation

eters. It takes a score, or a performance score, as argument and utilises a number of
member variables that are part of the Performer class and its derived classes (e.g., the
PianoPerformer class). The pseudo-code for the method looks as follows:

// used member variables:
// Performer performer (this) the current performer object
// Instrument instrument the performer’s instrument

public Curve thaw(Score score) {
// first, segment score
Segment[] segments = segmentScore(score);

// initialise and prepare curve
Curve curve = initialiseCurve();

// construct symbolic gesture curve
// based on segmented score, performer, and instrument
constructCurve(curve, segments, this, instrument);

// if score is a performance score,
// shape curve based on score, performer, and instrument
if (score.isPerformanceScore()) {

shapeCurveGeom(curve, segments, this, instrument);
shapeCurvePhys(curve, segments, this, instrument);

}

// return the resulting gesture curve
return curve;

}

�

The following sections will depict the individual processing steps in detail. The
pseudo code extracts follow Java coding style, but with simplified constructs for list pro-
cessing. Further observe that, for simplicity, the presented data structures are specific to
piano performance. The actual implementation is more generic.

4.4.1 Score Segmentation
We have shown in sections 3.3 and 3.4.1 that the segmentation of the score is central to
the initial construction and to the shaping of gesture curves. It splits a score into small
parts from where elementary gestures (i.e., the individual curve segments) are created.
From the viewpoint of implementing the theory, the segmentation of a score has another
significance: the organisation of a score into a data-structure that is well suited for the
construction of elementary gesture curves and the navigation between them. For example,
this includes problems like “what is the next note that finger x will have to play?”, or

4.4. Efficient Calculation and Shaping of Gesture Curves 69

“what other fingers are involved in playing at a certain onset time E (or e, in the case of a
performance score)?”

A segmented score consists of a sorted array of objects of type Segment, in ascend-
ing order with respect to onset time. Each segment is of a certain type (None, Attack,
Hold, and Release, as given in 3.4.1, and contains a reference to the previous and to the
next segment in the array. It further contains an array of Finger objects, one for each
of the ten fingers. Each of these objects contains the type (again, None, Attack, Hold,
and Release) specific to the finger, since an individual finger’s type may differ from the
segment’s master type. It contains a reference to the current event (or null, if none), and
references to the previous and next event that the finger has played, or will have to play,
respectively. Finally, each finger object contains Curve intervals for E, X , Y , and Z. The
following pseudo code extract summarises the two data-structures:

public static class Segment {
// define segment types as constants
public static final int HOLD = 0;
public static final int ATTACK = 1;
public static final int NONE = 2;
public static final int RELEASE = 3;
public int type; // master segment type
public double startTime; // start of segment
public double endTime; // end of segment
public Segment prev; // previous segment
public Segment next; // next segment
public Finger[] fingers; // array of finger structures

}

public static class Finger {
public int type; // segment type for that finger
public Event event; // reference to score event
public Event prev; // previous score event
public Event next; // next score event
public Interval e; // curve interval for onset time
public Interval x; // curve interval for x axis
public Interval y; // curve interval for y axis
public Interval z; // curve interval for z axis

}

public static class Event {
public double e; // onset time
public double h; // pitch
public double l; // loudness
public double d; // duration
public double f; // finger

}

�

70 Chapter 4. Implementation

At this point we may point out that the implemented organisation of a segmented
score resembles more the traditional design of algorithms and data-structures than strict
object-oriented design. The main reason for this design decision are performance issues:
simple data-structures are typically more efficient for algorithmic processing than large
and nested class hierarchies.

The actual method, segmentScore(), builds the sorted list of segments in three
passes: first, it processes the Score and creates Attack and Release segments for all ap-
pearing events. The second pass processes the list of created segments and adds None
and Hold segments for the remaining placeholders. The final pass completes the finger
structures that have only in part been initialised by the first two passes.

public Segment[] segmentScore(Score score) {
Segment[] segments;

// pass 1: create Attack and Release segments
foreach (Event event in score) {

Segment s;

// create attack segment if it does not exist
// for the event’s onset time
if (s = segments.find(event.e) != null) {

s = new Segment(ATTACK, event.e, event.e);
segments.append(s);

}

// add the corresponding finger to the segment
s.fingers[e.f] = new Finger(ATTACK, event);

// create release segment if it does not exist
// for the event’s onset time + duration
if (s = segments.find(event.e+event.d) != null) {

s = new Segment(RELEASE, event.e + event.d,
event.e + event.d);

segments.append(s);
}

// add the corresponding finger to the segment
s.fingers[e.f] = new Finger(RELEASE, event);

}

// pass 2: add None and Hold segments
foreach (Segment segment in segments) {

Segment s;

if (segment.type == ATTACK) {
s = new Segment(HOLD, segment.endTime);

4.4. Efficient Calculation and Shaping of Gesture Curves 71

segments.insertAfter(segment, s);
} else if (segment.type == RELEASE) {

s = new Segment(NONE, segment.startTime);
segments.insertAfter(segment, s);

}
}

// pass 3: complete missing data
foreach (Segment segment in segments) {

// complete prev and next segment
segment.prev = segments.prev(segment);
segment.next = segments.next(segment);

// complete finger information
// the method buildFingers completes
// all finger structures with missing information
// (e.g. prev and next event, and type)
segment.buildFingers();

}

// finally return segment list
return segments;

}

�

4.4.2 Curve Setup
The task of setting up the curve that will be returned by thaw() basically consists of
initialising an object of type Curve (section 4.2.2), and adding the required co-ordinate
axes for the hand root and all fingers. The resulting curve contains 48 axes, 24 for each
hand: e, x, y, and z for the hand root; and e, x, y, and z for each finger. Observe, that
in contrast to the theory (section 3.4.1), the hand roots and the fingers consist of separate
onset axes (e). With the current implementation, these axes will all be identical after the
calculation, but with an eye on future developments, we can think of having individual
onset axes for the hand roots and the fingers.

4.4.3 Symbolic Gesture Curve Construction
After the score segmentation and the curve setup have been completed, we are ready
to construct the symbolic gesture curves for each segment. At this point, the boundary
conditions (section 3.4.3), and the boundary value mappings (3.4.4) need to be taken into
account. They are implemented as small mapping methods, which will be listed below,
but let us first give the pseudo-code for the curve construction method. For simplicity the
handling of special cases at the beginning and at the end of the segment lists is omitted.

72 Chapter 4. Implementation

public void constructCurve(Curve curve, Segment[] segments,
Performer performer,
Instrument instrument) {

// first, calculate the range for each segment
// (which is 1 / number of segments)
double range = 1 / segments.length;

// iterate through all segments
for (int i = 0; i < segments.length, ++i) {

Segment segment = segments[i];

// calculate t0 and t1 for current segment
double t0 = range * i;
double t1 = range * (i + 1);

// iterate through each finger of current segment
for (int j = 0; j < segment.fingers.length; ++j) {

Finger finger = segment.fingers[j];
double x0, x1, y0, y1, dy, z0, z1;

// construct curve interval depending on the
// finger’s segment type
switch (finger.type) {
case NONE:

// x: move from previous to next event
// y: move from previous to next event
// z: move from previous to next event
x0 = performer.pitch2x(finger.prev);
x1 = performer.pitch2x(finger.next);
y0 = performer.pitch2yr(finger.prev);
y1 = performer.pitch2yr(finger.next);
z0 = performer.pitch2x(finger.prev);
z1 = performer.pitch2x(finger.next);

// create curve intervals
f.x = new CubicInterval(t0, t1, x0, x1, 0, 0);
f.y = new CubicInterval(t0, t1, y0, y1, 0, 0);
f.z = new CubicInterval(t0, t1, z0, z1, 0, 0);

break;

case ATTACK:
// x: constant at current event
// y: press key
// z: constant at current event
x0 = performer.pitch2x(finger.event);
y0 = performer.pitch2yr(finger.event);
y1 = performer.pitch2yp(finger.event);

4.4. Efficient Calculation and Shaping of Gesture Curves 73

dy = performer.velocity2dy(finger.event);
z0 = performer.pitch2x(finger.event);

// create curve intervals
f.x = new ConstantInterval(t0, t1, x0);
f.y = new CubicInterval(t0, t1, y0, y1, 0, dy);
f.z = new ConstantInterval(t0, t1, z0);

break;

case HOLD:
// x: constant at current event
// y: constant at pressed key position
// z: constant at current event
x0 = performer.pitch2x(finger.event);
y0 = performer.pitch2yp(finger.event);
z0 = performer.pitch2x(finger.event);

// create curve intervals
f.x = new ConstantInterval(t0, t1, x0);
f.y = new ConstantInterval(t0, t1, y0);
f.z = new ConstantInterval(t0, t1, z0);

break;

case RELEASE:
// x: constant at current event
// y: release key
// z: constant at current event
x0 = performer.pitch2x(finger.event);
y0 = performer.pitch2yp(finger.event);
y1 = performer.pitch2yr(finger.event);
dy = performer.velocity2dy(finger.event);
z0 = performer.pitch2x(finger.event);

// create curve intervals
f.x = new ConstantInterval(t0, t1, x0);
f.y = new CubicInterval(t0, t1, y0, y1, -dy, 0);
f.z = new ConstantInterval(t0, t1, z0);

break;
}

// add onset time interval
finger.e = new LinearInterval(t0, t1,

segment.startTime,
segment.endTime);

// add intervals to curve
curve.addInterval(j + "e", finger.e);

74 Chapter 4. Implementation

curve.addInterval(j + "x", finger.x);
curve.addInterval(j + "y", finger.y);
curve.addInterval(j + "z", finger.z);

}
}

}

�

As above code extract shows, the Performer object contains the mapping functions
for MIDI values to performer- and instrument-specific co-ordinate values: pitch2x()
converts from MIDI pitch to the x co-ordinate (corresponds to equation 3.36), pitch2z()
is the equivalent method for the z co-ordinate (equation 3.39). The methods pitch2yr()
and pitch2yp() map from given pitch to the finger’s rest or pressed position (equations
3.37 and 3.38). Finally, the method velocity2dy() maps from MIDI velocity to the
derivative of the curve when the key is pressed (equation 3.40).

4.4.4 Shaping of Physical Gesture Curves
In the case of the construction of gesture curves in the physical domain, the last step is to
shape the calculated curve according to given physical constraints, such that the resulting
curve can for example be used to animate a virtual hand model. The current implemen-
tation follows the theory and results of section 3.4. Due to the complexity of solving
all constraints using the Sturm theorem, it only implements a part of it. Since the pro-
cessing structure is open to extensions, a future implementation incorporating complete
constraints calculations could easily be integrated.

As shown in the theory, the shaping occurs in two steps: first, geometric shaping is
applied, and then physical shaping is applied as the final step.

Geometric Shaping

Central to the geometric shaping process is the method to find the targets for the next
segment, as explained in section 3.4.7. The method findTargets() determines, which
fingers are involved in playing in the current segment, and where they are supposed to
move to the positions required for the upcoming segments.

public void shapeCurveGeom(Curve curve, Segment[] segments,
Performer performer,
Instrument instrument) {

// first, find targets for segment 0
double[] prevTargets = findTargets(segments[0]);

// then, iterate through each segment
for (int i = 0; i < segments.length; ++i) {

// find next targets
double[] nextTargets = findTargets(segments[i]);

4.4. Efficient Calculation and Shaping of Gesture Curves 75

// iterate through all fingers
for (int j = 0; j < segments[i].fingers.length; ++j) {

Finger finger = segments[i].fingers[j];

// only shape NONE segments, all others are fixed
if (finger.type == NONE) {

f.x.setV0(prevTarget[j]);
f.x.setV1(nextTarget[j]);

}
}

}
}

�

After geometric shaping is performed, the curve is in a geometric consistent state.
Still remaining is the shaping of the onset time axis, i.e., the physical shaping since the
finger movements for Attack and Release segments still occur at infinite velocity in the
current state.

Physical Shaping

The remaining step of shaping the time line is based on the results of the one-dimensional
solution delivered by the Sturm theorem (section 3.4.6). Shaping occurs in two situations:
first, the movements for Attack and Release segments will require the appropriate amount
of time. Second, we need to shape the curve in the cases where there is not enough spare
time to move a finger from one key to the next. This means that a pressed key has to
be released earlier than expected in those cases. The shaping method will also determine
the cases, where physical shaping is not possible at all, the main case here is where the
required time to shorten an event is larger than the event itself. In that case, the score is
not playable with the given constraints.

public void shapeCurvePhys(Curve curve, Segment[] segments,
Performer performer,
Instrument instrument) {

// each finger is handled individually, so we first
// iterate through all fingers, then through all segments
for (int f = 0; f < segments[0].fingers.length; ++f) {

for (int i = 0; i < segments.length;) {
// t_avl is the available time for shaping
// t_req is the required time for shaping
double t_avl = 0;

// start at current segment and look ahead until
// a HOLD segment is reached
int j = i;

76 Chapter 4. Implementation

while (j < segments.length && segments[j].type != HOLD) {
// required times will be depending on current event
Finger finger = segments[j].finger[f];

switch (segments[j].type) {
case NONE:

t_avl = finger.e.getV1() - finger.e.getV0();
t_req = performer.moveTime(finger);
break;

case ATTACK:
t_req += performer.attackTime(finger);
break;

case RELEASE:
t_req += performer.releaseTime(finger);
break;

}

++j;
}

// advance current segment
// j is the index of the segment to be modified
i = j + 1;
--j;

// get required attack/release times for event at j
double d_attack = performer.attackTime(

segments[j].fingers[f]);
double d_release = performer.releaseTime(

segments[j].fingers[f]);
if (j == 1) {

// a) special case at beginning
segments[j - 1].fingers[f].e.addToV1(-d_attack);
segments[j - 0].fingers[f].e.addToV0(-d_attack);

} else if (j == segments.length - 1) {
// b) special case at end
segments[j - 1].fingers[f].e.addToV1(d_release);
segments[j - 0].fingers[f].e.addToV0(d_release);

} else if (segments[j - 2].type == ATTACK) {
// c) ATTACK - HOLD - ATTACK case
segments[j - 1].fingers[f].e.addToV1(-d_attack);
segments[j - 0].fingers[f].e.addToV0(-d_attack);

} else if (t_avl >= t_req) {
// d) enough time for ATTACK and RELEASE

4.4. Efficient Calculation and Shaping of Gesture Curves 77

segments[j - 2].fingers[f].e.addToV1(d_release);
segments[j - 1].fingers[f].e.addToV0(d_release);
segments[j - 1].fingers[f].e.addToV1(-d_attack);
segments[j - 0].fingers[f].e.addToV0(-d_attack);

} else {
// e) not enough time (modification required)
double t = t_req - t_avl;

segments[j - 3].fingers[f].e.addToV1(-t);
segments[j - 2].fingers[f].e.addToV0(-t);
segments[j - 2].fingers[f].e.addToV1(t + d_release);
segments[j - 1].fingers[f].e.addToV0(t + d_release);
segments[j - 1].fingers[f].e.addToV1(-d_attack);
segments[j - 0].fingers[f].e.addToV0(-d_attack);

}
}

}
}

�

In the previous pseudo code extract, the methods Performer.attackTime(),
Performer.releaseTime(), and Performer.moveTime() deliver the required times
for a certain action depending on the current finger and its associated event.

78 Chapter 4. Implementation

Chapter 5

Applications

In this chapter, we will present realised applications that make use of the theory and
implementation of the previous chapters. We will also shortly highlight what the direction
for the future developments of those applications would be. The first application, the
animation of body parts, more precisely the hands of virtual music performers, may be
seen as the main target application of the theory on gesture curves. The next section will
show how gesture curves can be used for the generation and animation of abstract objects;
these animations can be used for interactive audio-visual live performances with different
sensing inputs.

Another application is the sound synthesis of musical instruments using gestural
inputs. Using gesture curves for sound synthesis can help to improve the quality of realism
and expression in virtual instruments. Finally, an outlook is given on how gesture curves
could be used for music composition.

5.1 Virtual Music Performers

We have noted in chapter 3 that the calculation of gesture curves can be seen as a compu-
tational pre-stage for automated animation of human body parts. Thus, for the animation
of a virtual performer’s hands playing the piano we have used a number of existing com-
ponents, some of them are used for the calculation of gesture curves, and some of them
are fed with the resulting sampled gesture curves. Figure 5.1 shows the “big picture” of
how our software, i.e. the PerformanceRubette, has been integrated into the process of
animating a human hand model.

The process begins with two data-sets: the first is the musical data to be processed,
typically a performance score with supplementary fingering information. The second is a
human hand model that provides the required constraints, and that can be animated by a
modelling and animation software, as Alias’ Maya. For the audio part, the musical data
is directly processed by an audio synthesiser, as Apple’s QuickTime in our case, resulting
in an audio track, ready for being mixed to the video track.

79

80 Chapter 5. Applications

Music Data
(Performance Score)

Sampled
Gesture Curves

Hand Model

Composite
Audio-Video
Sequence

Video TrackAudio Track

Gesture Curve
Calculation
and Shaping

(Performance Rubette)

Audio
Synthesiser

(QuickTime)

Modelling and
Animation Software

(Maya)

Video Editing
Software

(Final Cut Pro)

Figure 5.1: The integration of gesture curve calculation into the process of animating
a human hand model.

For the animation part, the PerformanceRubette first processes the provided musical
data, i.e. it “thaws” the performance score according to chapter 3. The shaping of the
generated gesture curves processed together with the given constraints provided by the
hand model (the hand model was provided by the Computer Vision Group at ETHZ (Bray
et al., 2004)). Then, the shaped gesture curves are sampled and exported into a file. Figure
5.2 shows the resulting gesture curves for the simple score example from section 3.3.
For simplicity, the curves for all uninvolved fingers and the hand root has been omitted.
The file is read into Maya using a short Mel script (Mel is Maya’s integrated scripting
language), where for every curve samples corresponding animation keyframes are created.

Since the PerformanceRubette only delivers the positions of the finger tips and the
hand root, inverse kinematics (IK) issues are solved by using Maya’s internal IK solver.
Maya then renders the animation sequence, and the resulting video frames are stored in a
video track. Finally, the audio track and the video track are mixed together using a video
editing software, in this case Apple’s Final Cut Pro. This is a manual step and particular
attention has to be kept to audio-video-synchronisation. The resulting sequence can then

5.1. Virtual Music Performers 81

b)

a)

y
x

z

y
x

z

C4

C4

Finger 2

Finger 2

Finger 3

Finger 3

Figure 5.2: Unshaped (a) and shaped (b) gesture curves for the movements of the
finger tips of fingers 2 and 3 when performing the example score from section 3.3.

82 Chapter 5. Applications

Figure 5.3: Exercise from Carl Czerny’s Vollständige theoretisch-praktische Pi-
anoforte Schule, Op. 500.

be exported, or it can be used for further processing.
We have applied this processing method to the right hand performance of an exercise

from Carl Czerny’s Vollständige theoretisch-praktische Pianoforte Schule, Op. 500, of
which the score is given in figure 5.3. Figure 5.4 shows two frames of the resulting video
sequence. The video sequence is found on the accompanying CD-ROM (Appendix A).

While our set-up provides a semi-automatic method for the animation of a per-
former’s hands playing the piano, it is rather inconvenient when used with larger music
pieces, or when used in conjunction with animation of other objects because of the man-
ual overhead required for the animation of the keyboard keys. A future version that could
be used for production-grade animation of human hands could for example be built as
a Maya plug-in that takes a performance score and the hand model data as inputs and
then generates the necessary animation curves. In such a case, manual overhead could be
avoided to a large part.

5.2 Gesture-controlled Abstract Objects

The previous section dealt with the application of gesture curves to the animation of hu-
man body parts. This section shows how gesture curves can be used for the generation
and animation of abstract objects. The method has successfully been used in interactive
audio-visual live performances with Soundium 2 (section 2.8).

The basic idea is to capture audio data, MIDI data, and data provided by aribtrary
sensory devices such as pressure sensors, movement detectors, and 3D motion trackers
(figure 5.5). The captured data is then analysed in order to extract features that can be
used for the shaping process of gesture curves. For audio data this typically includes beat
detection and higher level rhythmic analysis, and the extraction of other audio features,
such as levels and sound colours. The extracted features can then be used to generate and
manipulate abstract graphical objects, ranging from simple circle, disks, and polygons to
complex, fully textured 3D objects.

Since Soundium 2 is an interactive performance application, it permits the user to
define parameterised gesture curves at run-time without the interruption of the running
performance. The curves can be of arbitrary dimension, but practise has shown that 1D

5.2. Gesture-controlled Abstract Objects 83

a)

b)

y
x

z

yx z

Figure 5.4: Two frames of the resulting video sequence of the Czerny exercise, a)
top-rear view, and b) top-front view.

84 Chapter 5. Applications

Figure 5.5: Data flow for typical setup in an interactive performance application where
gesture curves are used to animate visual objects.

curves (for simple movements of objects, such as a rotation around a fixed axis), 3D
curves (for more complex movements of objects, such as a real 3D translation), and 9D
curves (for a completely specified manipulation of an object in terms of translation, scale
and orientation) are most useful.

The parameter range [0, 1] of a curve is then mapped to a (typically integral) multiple
of the extracted beat intervals. The curves by themselves can be manipulated using the
gesture curve operations given in section 3.2. The curves can not only be used for the
manipulation of visual objects, they can for instance also be used for the manipulation of
audio data, therefore providing a method of feedback to the system of audio-visual inputs
and outputs.

While the real-time synchronisation of audio and video has been available in live
performance tools before, the use of parameterised curves for the generation and manip-
ulation of audio and video objects provides a powerful and unified method to performing
artists and drastically enhances the expressive capabilities of a performance tool such as

5.3. Gesture-controlled Sound Synthesis 85

Soundium 2. In a further step, the concepts could be incorporated into professional video-
editing tools, for instance supporting the user with automatic audio-based video cutting.
Triggers for scene transitions and parameters for image manipulation, such as brightness,
colour correction, etc., could then be mapped to parameterised curves which are synchro-
nised to a number of audio or control streams.

Example video sequences taken during several live performances using Soundium
2 are found on the accompanying CD-ROM (Appendix A).

5.3 Gesture-controlled Sound Synthesis
As pointed out in section 2.5, many modern sound synthesis methods offer large param-
eter spaces in order to control of the generated sound. However, not all possible values
in those parameter spaces produce “good” sounds: for instance a simple frequency mod-
ulation (FM) synthesiser is typically controlled by a number of base and carrier frequen-
cies and associated amplitudes. Now, only very specific values for the frequencies and
amplitudes produce sounds that can be used. Most other values, and random values in
particular, produce sounds with poor spectrums, thus sounding like sine waves, or they
produce noise. This observation becomes even more serious for physical modelling syn-
thesis methods. Thus, a desired solution would be a much simpler parameter space that
provides an intuitive method of control for the produced sounds and that prohibits the
generation of “useless” sounds. Required in this case is a mapping from such a simple
parameter space to the parameter space of an individual synthesis method. Gesture curves
can provide such a mapping: they allow the control of a virtual instrument through gestu-
ral parameters.

In (Laczko, 2003), the physical modelling software Modalys (section 2.5.3) was
used to model the mechanics of a piano. The input to the model is a gesture curve de-
scribing the movement of a finger tip pressing a key, thus consisting of position and ve-
locity parameters. The input parameters are then evaluated, and the event of pressing or
releasing a key is mapped to the synthesis of the piano hammer hitting the string.

While the model for a virtual piano is very simplistic and the gestural control of
pressing a keyboard key is rather limited, it demonstrates that gesture curves can be used
for the control of virtual instruments. Figure 5.6 (a) illustrates the work flow for a typical
setup: An input score is “thawed”, the resulting curves are then mapped to the synthe-
siser’s parameter space. A conversion step would convert the curve data to the synthe-
siser’s internal data representation, for example, in Laczko’s work this is done using a
script to create a Modalys input file from given curve data.

In future steps, the method could be applied to instruments with highly complex
gestural parameter spaces, such as a virtual violin. In such a case, the gesture curves
would represent the complex and manifold ways of playing a violin, including vibrato
movements for one hand, or the many different ways of controlling the bow, and other
ways to excite the strings, for example plucking.

Another future application is the use of gesture curves in conjunction with electro-
mechanic music instruments, such as electric violins, or electric wind instruments (figure

86 Chapter 5. Applications

Score Instrumentb)a)

Mapping Mapping

Conversion Conversion

Synthesiser Synthesiser

Audio Audio

"Thaw"

Figure 5.6: Data flow for typical setup when gesture curves are used for sound syn-
thesis: a) when a performance score is “thawed” and the resulting curves are used as
input, and b) when a gestural input device is used as input.

5.6 (b)). Most of these instruments map the usually rich gestural input parameter sets to
a MIDI stream, thus loosing a large amount of the gestural information provided by the
player. Instead of this mapping, the sensory inputs can be used to directly generate gesture
curves, which can then be used to map the input parameter space to the parameter space
of the appropriate synthesis method, as explained above.

5.4 Composition with Musical Gestures
In (Müller and Mazzola, 2003a), a number of questions were raised how musical gestures,
and gesture curves in particular, could be used for music composition. We have pointed
out in section 2.1.1 that composers often use a mental image of a musical gesture to
compose, so providing appropriate tools to compose directly with a concept of musical
gestures would help in realising this mental images in a more direct manner.

One of the main difference between traditional composition methods and a possi-
ble gestural composition method is that the former typically deals with discrete music
events, such as individual notes. In contrast, the latter would have to take into account
the continuous nature of gesture curves: music events would not be represented as indi-
vidual entities, but rather as continuous groups of events, where polyphony for example
would implicitly be covered. The concepts of operations on gesture curves, as presented
in section 3.2, would provide powerful mechanisms to enhance the expressiveness of the
composition process.

For the realisation of a gestural composition software we see two main challenges:
the first deals with the syntax and the semantics of gesture curves. One would have to de-
fine a language of musical gestures that are useful for composition. In chapters 3 we have
mainly dealt with “microgestures” – gestures that represent only very basic movements
and do not contain a large amount of meaning by themselves. Therefore further research

5.4. Composition with Musical Gestures 87

on how more complex gestures can be built out of simpler ones is required. The second
challenge deals with the question of how an appropriate user interface (either graphical,
or including specialised devices) for gestural composition would look like. Powerful but
intuitive mechanisms for the creation and manipulation of gesture curves would definitely
be required.

88 Chapter 5. Applications

Chapter 6

Conclusions and Future Work

This thesis has dealt with the reconstruction of musical gestures from given musical
material, typically a music performance. The reconstructed gestures are represented by
parameterised gesture curves, which can be used to semi-automatically animate hand
movements of virtual performers, or to animate abstract objects, which then behave syn-
chronously to the original performance. Gesture curves can further be used to control
virtual musical instruments by providing a mapping between gestural parameter spaces
and the instrument parameter space, and for gesture-based composition techniques.

The question of reconstructing musical gestures has two origins. The first is the shift
that took place in music listening practice when music recording became available: since
only the acoustic aspect of a music performance is recorded, all other aspects, and in
particular performers’ physical behaviour, i.e. their gestures is lost. Further, synthetically
produced sounds are often completely unrelated to musical gestures, since the previously
strict connection between environment, performer, instrument, and listener is blurred.
Thus, the capability to reconstruct musical gestures from a given performance provides a
way to make computer-generated music performance more realistic.

The second origin arises from a recent trend in computer animation: at the same
time as computer animations are getting more realistic, they are getting more complex as
well. Today, the complexity has reached a level where automatic or semi-automatic tools
supporting the animators are mandatory. Our work contributes to this trend by providing a
mechanism for the automatic generation of gestural movements in animations based on a
data source – in our case the animation of a human hand playing an instrument according
to a music performance.

In this concluding chapter, we will present the results achieved, and discuss existing
problem areas. An outlook will hi-light possible future directions of our work.

89

90 Chapter 6. Conclusions and Future Work

6.1 Results
We have presented a novel mathematical framework which allows for the representation
and manipulation of musical gestures. Gestures are represented by parameterised gesture
curves. By defining a number of mathematical operations, such as addition, scaling, or
concatenation, the gesture curves can be manipulated, and complex curves can be built
out of simple ones. The framework fits into the existing model of musical performance
of mathematical music theory, where a music performance is defined as a transformation
from a symbolic score space to a physical performance space. The gesture curves are
defined in raised pairs of spaces, the symbolic and the physical gesture space, and, analo-
gous to the performance transformation ℘Score there is a gesture transformation ℘Gesture

from the symbolic to the physical gesture space.
The observation that music notation originated from Neumes and became increas-

ingly abstract over the centuries supports our thesis that notes in a musical score can be
seen as an abstract notation of musical gestures, or, in other words, that notes are “frozen”
gestures. Thus, the vertical relationships, i.e. between the score space and the symbolic
gesture space, and between the performance space and the physical gesture space, are
defined by a “freezing” operation, which transforms the gesture space to the score space,
and a “thawing” operation, which transforms in the opposite direction. We have shown
how this vertical operations can be realised, more precisely how gesture curves can be
constructed from a given score. At the core of these operations is the segmentation of the
musical score into small intervals, where the parameterised curves are placed.

While the generated curves are valid in the symbolic domain, they need further ma-
nipulation in the physical domain to account for given anatomic, geometric and physical
constraints. We have defined a constrained hand model that is well-suited for piano per-
formance. The manipulation of the originally constructed curves is realised in terms of
a shaping, in order to satisfy the constraints given by the hand model. The constraints,
formulated as inequalities, can be solved using Sturm’s theorem for cubic splines, and we
have presented the solution for the one-dimensional case.

The major part of the theory has been implemented in Java in a software module
for computer-aided musical performance, the PerformanceRubette. The software has suc-
cessfully been used to calculate gesture curves for musical scores, which then have been
feed into the animation software Maya, where they were used to animate a hand model
playing on a keyboard. The software is further used for audio-visual live performances,
where gesture curves control the generation and manipulation of abstract visual objects.
Finally, we have shown how gesture curves can control physically modelled virtual in-
struments.

6.2 Problem Areas
The main problem we encountered deals with the complexity of the human hand. Defining
a complete set of constraints for possible finger movements results in a large number of
inequalities, some of which are high-order polynoms. The attempt to symbolically solve

6.3. Future Work 91

the whole set of constraints using Sturm’s theorem at once imposes major problems even
to advanced mathematics packages such as Mathematica. While the solution for the one-
dimensional case is relatively simple, the resulting terms are getting immensely large and
complex when adding additional constraints and we were unable to obtain a solution for
the whole set. We have attacked the problem by splitting geometric and physical con-
straints, which opens the path for a solution. Future work would include the realisation of
the new method and an evaluation of its correctness.

Another problem arises from the method of using an external hand model and the
integration of the different software components in terms of a loosely coupled network.
The hand model we used comes with its own constraints, and they need to be mapped
to the constraints defined in section 3.4.3. Currently, this mapping was done manually, a
step that has to be repeated every time a change is made to the hand model. As mentioned
in section 5.1, the situation could be improved with the development of an integrated
software module as a plug-in for Maya. The module would then contain the hand model,
whose constraints are tightly coupled to the gesture curve calculation and shaping mech-
anism and to Maya’s internal inverse kinematics solver.

6.3 Future Work
From the viewpoint of the presented theory, future work would deal with concepts of how
higher level gestures can be represented. While gesture curves are capable of represent-
ing complex gestures, particularly in conjunction with the defined operations on gesture
curves, the challenging question is how to represent the meaning they are carrying. An im-
portant step would be the attempt to define a gesture grammar, or a gesture language with
the corresponding rules of how these gestures can be used in a meaningful way. While
there is almost no existing work on this subject in the field of music research, one could
certainly learn from Labanotation, an abstract gestural notation for dance choreography,
and from the extensive work that has been carried out on sign languages.

In terms of the implementation, the next steps would be to realise the construction
of gesture curves of other instruments than the piano, in particular wind and string in-
struments. While the theory on gesture curves is rather generic, every instrument has its
own characteristics, and its own method of gestural control. Thus, the constrained shap-
ing process would have to be refined for each instrument. Ideally, common constraints
for different instruments could be applied in a unified manner, which would reduce the
amount of work every time a new instrument is realised. Future work would also consider
not only the performer’s hands, but also arm movements, and ideally the whole body, in-
cluding facial expression. With those improvements, the task of automatic generation of
musical gestures could be realised in a commercial product for computer animation and
music educational tools.

We further believe that the development of a gestural composition software (section
5.4) is very promising. The availability of such a product would provide radically novel
ways of dealing with music objects to composers.

Finally, future work would examine how the presented theory could be applied to

92 Chapter 6. Conclusions and Future Work

other types of gestures, such as machine or hand writing, sign languages, or arbitrary
body movements. Such work could lead to an universal model of human gestures, and its
realisation would have enormous effects in computer animation.

Appendix A

CD-ROM Contents

The following documents are found in the top-level directory of the accompanying CD-
ROM:

smg.pdf (PDF) Browseable Acrobat PDF document of this thesis.

czerny.dv (DV-PAL) Animated sequence of right hand performing the exercise from
Carl Czerny’s Vollständige theoertisch-praktische Pianoforte Schule, Op. 500.

czerny.avi (DivX 5.0) Animated sequence of right hand performing the exercise from
Carl Czerny’s Vollständige theoertisch-praktische Pianoforte Schule, Op. 500.

scheinwerfer.mp4 (MPEG-4) Demo Reel and selected video sequences from interactive
live performances produced by the Soundium 2 multimedia system. The animations
are generated using parametric gesture curves which are matched to the beat of an
analysed audio input stream. (Copyright c© 2003 Corebounce Association.)

scheinwerfer.avi (DivX 5.0) Demo Reel and selected video sequences from interactive
live performances produced by the Soundium 2 multimedia system. The animations
are generated using parametric gesture curves which are matched to the beat of an
analysed audio input stream. (Copyright c© 2003 Corebounce Association.)

rubato Top-level directory of the full Java source code of the Distributed Rubato Frame-
work. Note that this code represents a snapshot as of March 2004. More recent
releases of Distributed Rubato will eventually be available online.

The movie files are also available online at:
http://www.ifi.unizh.ch/staff/mueller/diss/

93

94 Chapter A. CD-ROM Contents

Bibliography

Th. W. Adorno. Der getreue Korrepetitor. In Gesammelte Schriften, volume 15.
Suhrkamp, Frankfurt am Main, Germany, 1963.

I. Albrecht, J. Haber, and H.-P. Seidel. Construction and animation of anatomically based
human hand models. In D. Breen and M. Lin, editors, Eurographics / SIGGRAPH
Symposium on Computer Animation, 2003.

A. Asperti and G. Longo. Categories, Types and, Structures. An Introduction to Category
Theory for the Working Computer Scientist. MIT Press, Cambridge, 1991. Currently
out of print.

N. Badler, C. Phillips, and B. Webber. Simulating Humans: Computer Graphics, Anima-
tion, and Control. Oxford University Press, 1993.

N. Badler, M. Palmer, and R. Bindiganavale. Animation control for real-time virtual
humans. Commun ACM, 42:64–73, 1999.

M. Bray, E. Koller-Meier, P. Müller, L. Van Gool, and N. N. Schraudolph. Hand tracking
by rapid stochastic gradient descent using a skinning model. In Proceeedings of the
Conference on Visual Media Production, London, UK, 2004.

R. Bristow-Johnson. Wavetable synthesis 101, a fundamental perspective. In AES
Preprints. Audio Engineering Society, Los Angeles, 1996.

B. Buchholz, T. J. Armstrong, and S. A. Goldstein. Anthropometric data for describing
the kinematics of the human hand. Ergonomics, 35(3):261–273, 1992.

C. Cadoz and M. M. Wanderley. Gesture – Music. In M. M. Wanderley and M. Battier,
editors, Trends in Gestural Control of Music, pages 71–94. IRCAM Centre Pompidou,
2000.

R. Chase. Examination of the hand and relevant anatomy. Plastic Surgery, 7:4247–4284,
1990.

I. Choi. Gestural primitives and the context for computational processing in an interactive
performance system. In M. M. Wanderley and M. Battier, editors, Trends in Gestural
Control of Music, pages 139–171. IRCAM Centre Pompidou, 2000.

95

96 Bibliography

J. Chowning. The synthesis of complex audio spectra by means of frequency modulation.
Journal of the Audio Engineering Society, 21(7):526–534, 1973.

R. B. Dannenberg. An on-line algorithm for real-time accompaniment. In Proceedings
of the 1984 International Computer Music Conference, pages 193–198, San Francisco,
1984. International Computer Music Association.

DIN8996. Klaviatur für Pianos und Flügel. Beuth Verlag, Berlin, Wien, Zürich, 1985.

G. ElKoura and K. Singh. Handrix: Animating the human hand. In D. Breen and M. Lin,
editors, Eurographics / SIGGRAPH Symposium on Computer Animation, 2003.

S. Göller. Object-Oriented Rendering of Complex Abstract Data. PhD thesis, University
of Zürich, Zürich, Switzerland, 2004.

S. Göller and G. Milmeister. Composition on distributed rubato by affine transforma-
tions and deformations of musical structures. In Proceedings of the 2003 International
Computer Music Conference, San Francisco, 2003. International Computer Music As-
sociation.

H. Heijink, P. Desain, H. Honing, and L. Windsor. Make me a match: An evaluation of
different approaches to score-performance matching. Computer Music Journal, 24(1):
43–56, 2000.

H. Honing. Expresso, a strong and small editor for expression. In Proceedings of the
1992 International Computer Music Conference, pages 215–218, San Francisco, 1992.
International Computer Music Association.

F. Iazzetta. Meaning in musical gesture. In M. M. Wanderley and M. Battier, editors,
Trends in Gestural Control of Music, pages 259–268. IRCAM Centre Pompidou, 2000.

J. Kim, F. Cordier, and N. Magnenat-Thalmann. Neural network-based violonist’s hand
animation. In Proc. Computer Graphics International (CGI 2000), pages 37–41, 2003.

S. Laczko. Gestik als Medium. Lizentiatsarbeit. University of Zürich, Zürich, Switzerland,
2003.

J. Langner, R. Kopiez, Ch. Stoffel, and M. Wilz. Real-time analysis of dynamic shaping.
In C. et al. Woods, editor, Proceedings of the Sixth International Conference on Music
Perception and Cognition, Keele, Staffordshire, UK: Department of Psychology, 2000.

S. K. Liddell. Grammar, Gesture, and Meaning in American Sign Language. Cambridge
University Press, Cambridge, 2003.

S. Matsuda and T. Rai. DIPS: the real-time digital image processing objects for MAX
environment. In Proceedings of the 2000 International Computer Music Conference,
San Francisco, 2000. International Computer Music Association.

Bibliography 97

G. Mazzola. Inverse performance theory. In Proceedings of the 1995 International Com-
puter Music Conference, pages 533–540, San Francisco, 1995. International Computer
Music Association.

G. Mazzola. The topos geometry of musical logic. In G. Assayag, H. H. Feichtinger, and
J. Rodrigues, editors, Mathematics and Music. Springer, Berlin et al., 2002a.

G. Mazzola. Structures mathématiques dans l’interprétation et l’improvisation. In
Séminaire Mamux, Paris, France, 2002b. IRCAM Centre Pompidou.

G. Mazzola. Semiotic aspects of music. In Posner et al., editor, Semiotics: A Handbook on
the Sign-Theoretic Foundations of Nature and Culture, volume III, pages 3119–3188.
de Gruyter, W., Berlin, Germany, 1999.

G. Mazzola. The Topos of Music. Birkhäuser, Basel, Switzerland, 2002c.

G. Mazzola and S. Göller. Performance and interpretation. In G. Johannsen and G. de Poli,
editors, Human Supervision and Control in Engineering and Music, volume 31(3),
pages 221–232. Special Issue. Journal of New Music Research, 2002.

G. Mazzola and S. Müller. Physical shaping of symbolic gesture curves. In Proceedings of
the 2003 International Computer Music Conference, San Francisco, 2003. International
Computer Music Association.

G. Mazzola and O. Zahorka. The RUBATO performance workstation on NEXTSTEP.
In Proceedings of the 1994 International Computer Music Conference, San Francisco,
1994a. International Computer Music Association.

G. Mazzola and O. Zahorka. Tempo curves revisited: Hierarchies of performance fields.
Computer Music Journal, 18(1):40–52, 1994b.

J. McCartney. Rethinking the computer language: SuperCollider. Computer Music Jour-
nal, 26(4):61–68, 2002.

J. McDonald, T. Jorge, K. Alkoby, A. Berthiaume, R. Carter, P. Chomwong, J. Christo-
pher, M. J. Davidson, J. Furst, B. Konie, G. Lancaster, L. Roychoudhuri, E. Sedgwick,
N. Tomuro, and R. Wolfe. An improved articulated model of the human hand. The
Visual Computer, 17:158–166, 2001.

M. Montiel Hernandez. El denotador: Su estructura, constructión y papel en la theorı́a
matemática de la musica. Master’s thesis, Universidad Nacional Autónoma de México
(UNAM), México DF, 1999.

J. D. Morrison and J.-M. Adrien. Mosaic: A framework for modal synthesis. Computer
Music Journal, 17(1), 1993.

S. Müller. Audio expert system. Master’s thesis, Swiss Federal Institute of Technology
(ETHZ), Zürich, Switzerland, 1998.

98 Bibliography

S. Müller. Parametric gesture curves: A model for gestural performance. In G. Maz-
zola, T. Noll, and T. Weyde, editors, Proceedings of the 3rd International Seminar on
Mathematical Music Theory. EPOS, Osnabrück, 2003.

S. Müller. Computer-aided musical performance with the Distributed RUBATO environ-
ment. In G. Johannsen and G. de Poli, editors, Human Supervision and Control in
Engineering and Music, volume 31(3), pages 233–238. Special Issue. Journal of New
Music Research, 2002.

S. Müller and G. Mazzola. Perspectives of a gestural composition theory. In Séminaire
Mamux, Paris, France, 2003a. IRCAM Centre Pompidou.

S. Müller and G. Mazzola. The extraction of expressive shaping in performance. Com-
puter Music Journal, 27(1):47–58, 2003b.

R. Parncutt. Recording piano fingering in live performance. In B. Enders and N. Knolle,
editors, Proceedings of KlangArt-Kongress, pages 263–268, Osnabrück, Germany,
1995.

C. Parrish. The Notation of Medieval Music. Norton, W. W., New York, 1957.

M. Puckette and C. Lippe. Score following in practice. In Proceedings of the 1992
International Computer Music Conference, pages 182–185, San Francisco, 1992. In-
ternational Computer Music Association.

M. Pukette. MAX at seventeen. Computer Music Journal, 26(4):31–43, 2002.

R. Putz and R. Pabst. Atlas of Human Anatomy – Volume 1: Head, Neck, Upper Limb.
Lippincott Williams & Williams, Philadephia, 13th edition, 2001.

C. Ramstein. Analyse, Représentation et Traitement du Geste Instrumental. PhD thesis,
Institut National Polytechnique de Grenoble, Grenoble, France, 1991.

T. Richardson and K. R. Wood. The RFB Protocol. ORL, Cambridge, 1998.

C. Roads. The Computer Music Tutorial. MIT Press, Cambridge, 1996.

U.-J. Rüetschi. Denotative Geographical Modelling – An Attempt at Modelling Ge-
ographical Information with the Denotator System. Diploma Thesis. University of
Zürich, Zürich, Switzerland, 2001.

S. Schubiger. Automatic Software Configuration - A Model for Service Provisioning in a
Dynamic and Heterogenous Environment. PhD thesis, University of Fribourg, Fribourg,
Switzerland, 2002. No. 1393.

S. Schubiger-Banz and S. Müller. Soundium2 – an interactive multimedia playground.
In Proceedings of the 2003 International Computer Music Conference, San Francisco,
2003. International Computer Music Association.

Bibliography 99

J. Stange-Elbe. Analyse- und Interpretationsaspekte zu J. S. Bachs ‘Kunst der Fuge’ mit
Werkzeugen der Objektorientierten Informationstechnologie. Habilitation. University
of Osnabrück, Osnabrück, Germany, 1999.

J. Sundberg. Music performance research – an overview. In J. Sundberg, L. Nord, and
R. Carlson, editors, Music Language, Speech and Brain. MacMillan Press, London,
UK, 1991.

N. P. M. Todd. The dynamics of dynamics: A model of musical expression. Journal of
the Acousitcal Society of America, 91(6):3540–3550, 1992.

B. Vercoe. The synthetic performer in the context of live performance. In Proceedings
of the 1984 International Computer Music Conference, pages 275–278, San Francisco,
1984. International Computer Music Association.

I. Wachsmuth. Communicative rhythm in gesture and speech. In A. Braffort, R. Gherbi,
S. Gibet, J. Richardson, and D. Teil, editors, Gesture-Based Communication in Human-
Computer Interaction, pages 277–290. Stringer-Verlag, Heidelberg, 1999.

B. L. Waerden. Algebra I. Springer, Berlin et al., 1966.

Ch. Wagner. The pianist’s hand: Anthropometry and biomechanics. Ergonomics, 31(1):
97–131, 1988.

J. Weissmann. Human Computer Interaction with a Command Sign Language. PhD
thesis, University of Zürich, Zürich, Switzerland, 2003.

B. Zagonel. O Que É Gesto Musical. Brasiliense, São Paolo, 1992.

100 Bibliography

Index

Bezier curve, 63

Category theory, 12
Cubic interpolation, 62

Denotator, 13
Address, 14
Anonymous, 13
Co-ordinate, 13

Digital signal processing, 16
Distributed Rubato, 21

Architecture, 57
Curve classes, 61
Matrix package, 59

EspressoRubette, 11
Expression, 10

Form, 12
Co-ordinator, 12
Hierarchy, 13
Musical score, 13

Frozen gesture, 31

Gesture, 5
Classification, 6
Definition, 6
Grammars, 7
Model, 30
Primitives, 7
Spaces, 32
Transformation, 32

Gesture curve, 30
Boundary value mapping, 47
Constraints, 36
Construction, 35, 39, 71

Gesture Form, 30
Operations, 33
Shaping, 36, 74

Hand anatomy, 19
Hand model, 19

Boundary conditions, 43
Boundary inequalities, 44
Constrained, 40
Dynamic inequalities, 45

Inverse performance theory, 11

Jacobian matrix, 11

Max, 23
Modalys, 18
Music notation, 8
Music recording, 7

Neumes, 8, 31

Performance fields, 9
Performance theory, 9
Performance transformation, 10
PerformanceRubette, 64
Primavista Browser, 65

Rubette, 21, 57

Score
Segmentation, 35, 39, 68

Sound synthesis, 16
Additive synthesis, 17
FM synthesis, 18
Modal synthesis, 18

101

102 Index

Physical modelling, 18
Subtractive synthesis, 17
Wavetable synthesis, 17

Soundium, 23
Global system state, 25
Soundium language 1 (SL1), 25
System architecture, 23

Space type
Colimit, 13
Limit, 12
Powerset, 13
Simple, 13
Synonymy, 13

Sturm chain, 50
Sturm theorem, 50
SuperCollider, 23

Tempo curves, 9

	Introduction
	Synthesis of Musical Gestures
	Thesis Overview

	Background
	Musical Gestures
	Definitions and Classifications
	The Loss of Gestures in Recorded Music
	Gestural Primitives and Gesture Grammars

	Music Notation
	Theory of Music Performance
	Conventions and Definitions
	An Infinitesimal View on Expression
	Performance Transformations
	Inverse Performance

	Denotators and Forms
	Forms
	Denotators

	Digital Sound Synthesis
	Synthesis Basics
	Synthesis Methods
	Modalys

	Human Hand Models
	Hand Anatomy
	Hand Models in Anatomy and Biomechanics
	Hand Models in Computer Graphics

	The Distributed Rubato Platform
	Soundium 2
	System Architecture

	Gesture Curves and Gesture Spaces
	A Model for Musical Gestures
	Music Notation and Gestures: A Thesis
	Lifted Pairs of Spaces and Gesture Transformations

	Operations on Gesture Curves
	Constant Gestures
	Add and Scale
	Reverse Operation (Switch)
	Concatenation
	Product
	Top Space

	Initial Construction of Gesture Curves
	Constrained Shaping of Gesture Curves
	Curve Construction Revisited
	Defining the Virtual Keyboard
	Defining a Constrained Hand Model
	Boundary Value Mapping
	A General Method for Solving the Inequalities
	Solution of the One-Dimensional Case
	Separating Geometric and Physical Constraints

	Freezing Gesture Curves

	Implementation
	The Distributed Rubato Architecture
	Supporting Components
	The Matrix Package
	The Parameteric Curve Classes

	The PerformanceRubette
	Overall Design
	Support for Complex Instrument Spaces and Musical Gestures

	Efficient Calculation and Shaping of Gesture Curves
	Score Segmentation
	Curve Setup
	Symbolic Gesture Curve Construction
	Shaping of Physical Gesture Curves

	Applications
	Virtual Music Performers
	Gesture-controlled Abstract Objects
	Gesture-controlled Sound Synthesis
	Composition with Musical Gestures

	Conclusions and Future Work
	Results
	Problem Areas
	Future Work

	CD-ROM Contents
	Bibliography
	Index

