
DEFERRED RENDERING 
 
 
 
STEFAN MÜLLER ARISONA, ETH ZURICH 
 
 
 
 
SMA/2013-11-04 





DEFERRED RENDERING?



CONTENTS
1.  The traditional approach: Forward rendering
2.  Deferred rendering (DR) overview
3.  Example uses of DR: 

a.  Deferred shading
b.  Ambient occlusion (AO)

4.  Basic mechanisms to realize DR in OpenGL
5.  A simple deferred renderer in C++/Cinder
6.  Wrap-up & discussion
7.  Questions & further reading



LEARNING GOALS
§  Understand the motivation for DR and how it is different 

from forward rendering.
§  Know the advantages, challenges, and limitations of DR.
§  Understand example uses of DR (shading, AO).
§  Know the basic mechanisms in OpenGL to realize DR.

§  Download and explore the sample renderer.



1. FORWARD RENDERING



FORWARD RENDERING 
GENERAL APPROACH
§  The “traditional” approach since early OpenGL.

§  Geometric objects are sent as primitives to the GL.
§  Their vertices are transformed and processed by the vertex 

shader.
§  The primitives are rasterized.
§  The fragments are processed by the fragment shader (final color, 

depth test, masking, blending).
§  Shading can happen either in vertex or fragment shader or both.
§  Final fragments are written (or not written) to the framebuffer.



Source: opengl.org – OpenGL 1.1 specification  



Source: opengl.org – OpenGL 4.4 specification, p32  



FORWARD RENDERING 
OBSERVATIONS & LIMITATIONS
§  Classic, widely established and straightforward approach.
§  Supported by all graphics hardware.
§  Lighting cost

§  Every object in the scene is shaded (remember that depth 
test happens after fragment shading).

§  Complexity is o(nGeometries_pixels * nLights).
§  Some workarounds do exist (e.g. early depth test).

§  Local lighting only, no support for global illumination (GI).
§  Shader complexity increases with number of geometry types, 

material types, and light types.



2. DEFERRED RENDERING



DEFERRED RENDERING 
GENERAL IDEA
§  Multi-pass rendering approaches.

§  Emerging methodology, refers to a whole class of 
approaches, with many different options and 
possibilities.

§  General goal of the approaches is to reduce the amount 
of fragments shaded (i.e., shade final visible fragments 
only).



DEFERRED RENDERING 
ORIGINAL IDEA
§  Pass 1: Write geometry plus attributes into buffers (often 

called G-Buffers).
§  Typical attributes: Diffuse color, position, normal, texture 

coordinates.
§  Pass 2 - n: Operate on rendered frame buffers (i.e. in screen 

space). Use attributes to calculate final pixel color.

M Deering, S Winner, B Schediwy, C Duffy, N Hunt (1988). "The triangle processor and normal 
vector shader: a VLSI system for high performance graphics". ACM SIGGRAPH Computer 
Graphics 22 (4): 21–30.

T Saito, T Takahashi (1990). "Comprehensible rendering of 3-D shapes". ACM SIGGRAPH 
Computer Graphics 24 (4): 197–206.



G-Buffer Shading 
Pass 

Geometry 
Pass 

Shading 
Pass(es) 

Object 
Geometry & 
Attributes 

Lights & Other 
Shading-related 

Information 

G-Buffer G-Buffer Final Image 
(via Blending or 

Compositing) 



3A. EXAMPLE USES OF DR 
DEFERRED SHADING



DEFERRED SHADING 
GENERAL IDEA
§  Similar to previously shown diagram.

§  Geometry pass stores information required for lighting in 
each fragment: Diffuse color, position, normals.

§  Shading pass then shades each framebuffer pixel for 
each light according to chosen shading equation.

L(v,n) = cdiff ⊗ fdiff (BLk, lk,v,n)+ cspec⊗ fspec(BLk, lk,v,n
k=1

n

∑ )



G-Buffer 
Geometry 

Pass 
Lighting 

Pass 

Object 
Geometry & 
Attributes 

Lights 
(Point or 

Directional) 

G-Buffer G-Buffer Final Image 
(via Blending or 

Compositing) 

Diffuse Color, Normal, Position 
Diffuse & Phong Coefficients 



Diffuse    Normals 
 

Depth    Position 





DEFERRED SHADING 
GENERAL IDEA
§  Similar to previously shown diagram

§  Geometry pass stores information required for lighting in 
each fragment: Diffuse color, position, normals.

§  Shading pass then shades each framebuffer pixel for 
each light according to chosen shading equation.

§  Overall complexity o(nFramebuffer_pixels * nLights)



DEFERRED SHADING 
LIGHT VOLUMES
§  Most lights do not influence every pixel, e.g. when 

distant / small.

§  Thus, for each light we can only draw the area of 
influence.

§  For point lights, use a sphere or a cube.

§  For directional lights, use a cone or a pyramid.

§  Size of objects is determined by a light’s attenuation 
factors.







3B. EXAMPLE USES OF DR 
AMBIENT OCCLUSION



AMBIENT OCCLUSION 
INTRODUCTION
§  Ambient occlusion is a technique that approximates 

global illumination (GI), and in particular deals with 
ambient environment lighting.

§  In simple terms, the techniques takes into account that 
some areas of an object receive less light from the 
surrounding environment than others.

§  Such areas need to be attenuated.
§  First implemented by Hayden Landis et al. at ILM around 

2002 for RenderMan, i.e. non-real-time. 



5/11/13 12:32 PMProduction-Ready Global Illumination

Page 5 of 12http://renderman.pixar.com/view/production-ready-global-illumination

Figure 5.6: Simple example of Ambient Environment process. Top: environment map and plastic B25 illuminated with only an Ambient
Environment Light. Bottom left: Ambient Environment Light with occlusion and ”bent normals”. Bottom right: The B25’s final beauty render.

© Lucas Digital Ltd. LLC. All rights reserved.

Why ambient environments?

There are several advantages of using this method over traditional fill lighting techniques.

Using a chrome sphere gives you a more accurate representation of the environment than placing fill lights by hand. There is little guess work involved
and you get the exact environment as reflected in the chrome sphere.
The light completely surrounds an object. No dark patches or areas of missing illumination.
It is very efficient to set up and adjust - one light, one map.
Fast! One ambient environment light replaces 3 or more fill lights. There are no multiple shadow passes to render, only a single Ambient Occlusion pass
is required. You save the time it takes to compute the additional lights and shadow passes.
View independent. If the environment’s orientation changes there is no need to re-render the occlusion pass. If “baked” occlusion maps exist for a model,
no shadow or occlusion renders are necessary except for your key light and any other direct ”hard shadowed” light sources. Baked maps also free you
from any dependence on camera or object orientation.

Ambient environment lights

An Ambient Environment Light is simply a modified environment reflection. Rather than using the reflection vector

 R = reflect(IN,NN);

that we normaly use with an environment map, an Ambient Environment uses the surface normal

 R = normalize( faceforward(NN,I) );

which is the direction of the greatest diffuse contribution, to gather illumination from the environment. This is illustrated by the top two
images of Figure 5.7.

Since the RenderMan environment call conveniently blurs across texture seams, we can apply a large map blur value (25%-30%) rather
than sampling the environment multiple times as you might do with a ray-traced approach. The blurred lookup into the environment map
represents the diffuse contribution of the environment for any point on the surface (see bottom image, Figure 5.7). This has the speed
advantage of sampling our environment only once rather than multiple times.

5/11/13 12:32 PMProduction-Ready Global Illumination

Page 5 of 12http://renderman.pixar.com/view/production-ready-global-illumination

Figure 5.6: Simple example of Ambient Environment process. Top: environment map and plastic B25 illuminated with only an Ambient
Environment Light. Bottom left: Ambient Environment Light with occlusion and ”bent normals”. Bottom right: The B25’s final beauty render.

© Lucas Digital Ltd. LLC. All rights reserved.

Why ambient environments?

There are several advantages of using this method over traditional fill lighting techniques.

Using a chrome sphere gives you a more accurate representation of the environment than placing fill lights by hand. There is little guess work involved
and you get the exact environment as reflected in the chrome sphere.
The light completely surrounds an object. No dark patches or areas of missing illumination.
It is very efficient to set up and adjust - one light, one map.
Fast! One ambient environment light replaces 3 or more fill lights. There are no multiple shadow passes to render, only a single Ambient Occlusion pass
is required. You save the time it takes to compute the additional lights and shadow passes.
View independent. If the environment’s orientation changes there is no need to re-render the occlusion pass. If “baked” occlusion maps exist for a model,
no shadow or occlusion renders are necessary except for your key light and any other direct ”hard shadowed” light sources. Baked maps also free you
from any dependence on camera or object orientation.

Ambient environment lights

An Ambient Environment Light is simply a modified environment reflection. Rather than using the reflection vector

 R = reflect(IN,NN);

that we normaly use with an environment map, an Ambient Environment uses the surface normal

 R = normalize( faceforward(NN,I) );

which is the direction of the greatest diffuse contribution, to gather illumination from the environment. This is illustrated by the top two
images of Figure 5.7.

Since the RenderMan environment call conveniently blurs across texture seams, we can apply a large map blur value (25%-30%) rather
than sampling the environment multiple times as you might do with a ray-traced approach. The blurred lookup into the environment map
represents the diffuse contribution of the environment for any point on the surface (see bottom image, Figure 5.7). This has the speed
advantage of sampling our environment only once rather than multiple times.

5/11/13 12:32 PMProduction-Ready Global Illumination

Page 6 of 12http://renderman.pixar.com/view/production-ready-global-illumination

Figure 5.7: Top Left: Regular reflection environment lookup. Top right: Environment lookup using surface normal. Bottom: Environment
lookup using surface normal with 30% blur. © Lucas Digital Ltd. LLC. All rights reserved.

Ambient occlusion

Ambient occlusion is a crucial element in creating a realistic ambient environment. It provides the soft shadowing that we have come to
expect from global illumination and other more complex indirect lighting techniques. Surfaces not fully exposed to the environment need to
be attenuated properly so that they do not receive the full contribution of the ambient environment light. This is one of the main attractions
of using the Ambient Environment technique. In Figure 5.8 you can begin to see some of the subtle visual cues that will eventually help
convince us that the lighting is real.

Figure 5.8: Example Ambient Occlusion images. B25 bomber, Spinosaurus and Tyrannosaurus. © Lucas Digital Ltd. LLC. All rights reserved.
In order to get this effect, it is necessary to have an ambient occlusion render or “baked” ambient occlusion maps that represent this
attenuation of outside light. Ambient occlusion is achieved through the following process: For every surface point, rays are cast in a
hemisphere around the surface normal. The final occlusion amount is dependent on the number of rays that hit other surfaces or objects in
the scene.

Image not available
Figure 5.9: Simple illustration of surface sending out rays, some of which are blocked. Perhaps from the B25 fuselage under the wing.

Showing blocked rays from wing and engine nacelle. © Lucas Digital Ltd. LLC. All rights reserved.

Since the strongest diffuse contribution comes from the general direction of the surface normal, the result is weighted to favor samples
that are cast in that direction. If there is an object directly parallel to the surface it will be occluded more than if the same object were
placed to the side. Transparent or glass materials should be excluded from the Ambient Occlusion render. If you have opacity maps you
want to make sure that your ambient occlusion shader takes this into account. This pass can be rendered each frame for objects with
internal animation. For solid objects with few moving parts it can be rendered once and baked into texture maps. Baking the occlusion
maps gives you a huge advantage since they only need to be rendered once per object. This works because unlike Reflection Occlusion,

5/11/13 12:32 PMProduction-Ready Global Illumination

Page 8 of 12http://renderman.pixar.com/view/production-ready-global-illumination

Figure 5.12: Example of a spot light using standard shadows and a spot light using occlusion and bent normals for shadowing. © Lucas Digital Ltd.
LLC. All rights reserved..

Other uses for Ambient Occlusion

We’ve found several other useful applications for ambient occlusion. One of these is for creating contact shadows (see Figure 5.13).
Hiding shadow casting objects from primary rays but not secondary rays allows us to create contact shadows for objects that can then be
applied in the render or composite.

Figure 5.13: Example of Ambient Occlusion contact shadow. © Lucas Digital Ltd. LLC. All rights reserved..

Hayden Landis, Industrial Light + Magic

Application

Combining Reflection Occlusion and Ambient Environments has allowed us to realistically light complex scenes with a minimum of effort.
The lighting of many final scenes has been accomplished by using only three lights: Key, reflection, and Ambient Environment lights.

Figure 5.14 shows an example from Pearl Harbor. This shot required us to place 14 computer generated B25 bombers next to four real
B25 bombers on the deck of an aircraft carrier in Texas. Then we had to place this landlocked carrier it in the middle of the Pacific Ocean.

Diffuse Lighting Only Ambient Occlusion 

AO Contact Shadow Diffuse + AO 

© Lucas Digital LLC. Source: Pixar 
http://renderman.pixar.com/view/production-ready-global-illumination 



AMBIENT OCCLUSION 
EARLIER IMPLEMENTATIONS
§  Generate ambient 

occlusion map for the 
model.

§  Render the map 
together with 
environment map.

§  Generation can be 
hardware accelerated, 
e.g., using shadow 
mapping with a large 
number of lights.

For each triangle { 
  Compute center of triangle 
  Generate set of rays over the hemisphere there 
  Vector avgUnoccluded = Vector(0, 0, 0); 
  int numUnoccluded = 0; 
  For each ray { 
    If (ray doesn't intersect anything) { 
      avgUnoccluded += ray.direction; 
      ++numUnoccluded; 
    }  
  } 
  avgUnoccluded = normalize(avgUnoccluded); 
  accessibility = numUnoccluded / numRays; 
} 

From NVidia GPUGems, Chapter 17 
http://http.developer.nvidia.com/GPUGems/gpugems_ch17.html 



AMBIENT OCCLUSION 
APPROXIMATION USING DR

How can AO be achieved using deferred rendering?



SSAO: SCREEN SPACE 
AMBIENT OCCLUSION 
!
!! Approximates AO for real-time applications using a 

deferred fragment shader.!

!! Originally developed at Crytec in 2007 for the game 
Crysis, and then extended / modified by others.!

!! Instead of casting rays to obtain occlusion information, 
the SSAO approach samples the depth buffer.!

        Sign In    Create Account

Home For Beginners Top Members Marketplace

Home  »  Articles  »  Technical  »  Graphics Programming and Theory  »  Article: A Simple and Practical Approach to SSAO     

GoogleArticles Forums Community Classifieds

Watched Content  New Content

 3A Simple and Practical Approach to SSAOA Simple and Practical Approach to SSAO
By José María Méndez | Published May 25 2010 07:41 AM in Graphics Programming and Theory

occlusion  samples  buffer  float2  ssao  ambient  float3  sampling

If you find this article contains errors or problems rendering it unreadable (missing images or files, mangled
code, improper text formatting, etc) please contact the editor so corrections can be made. Thank you for
helping us improve this resource

Global illumination (GI) is a term used in computer graphics to refer to all lighting phenomena caused by
interaction between surfaces (light rebounding off them, refracting, or getting blocked), for example: color
bleeding, caustics, and shadows. Many times the term GI is used to refer only to color bleeding and realistic
ambient lighting. Direct illumination – light that comes directly from a light source – is easily computed in real-
time with today´s hardware, but we can´t say the same about GI because we need to gather information
about nearby surfaces for every surface in the scene and the complexity of this quickly gets out of control.
However, there are some approximations to GI that are easier to manage. When light travels through a
scene, rebounding off surfaces, there are some places that have a smaller chance of getting hit with light:
corners, tight gaps between objects, creases, etc. This results in those areas being darker than their
surroundings. 

This effect is called ambient occlusion (AO), and the usual method to simulate this darkening of certain areas
of the scene involves testing, for each surface, how much it is “occluded” or “blocked from light” by other
surfaces. Calculating this is faster than trying to account for all global lighting effects, but most existing AO
algorithms still can’t run in real-time.

Real-time AO was out of the reach until Screen Space Ambient Occlusion (SSAO) appeared. SSAO is a
method to approximate ambient occlusion in screen space. It was first used in games by Crytek, in their
“Crysis” franchise and has been used in many other games since. In this article I will explain a simple and
concise SSAO method that achieves better quality than the traditional implementation.

The SSAO in Crysis

Prerequisites

The original implementation by Crytek had a depth buffer as input and worked roughly like this: for each pixel
in the depth buffer, sample a few points in 3D around it, project them back to screen space and compare the
depth of the sample and the depth at that position in the depth buffer to determine if the sample is in front (no
occlusion) or behind a surface (it hits an occluding object). An occlusion buffer is generated by averaging the
distances of occluded samples to the depth buffer. However this approach has some problems (such as self
occlusion, haloing) that I will illustrate later.



SSAO 

§  Most of today’s implementations use a depth and a normal 

map, with random samples on a hemisphere.
§  Each sample is then tested whether it occludes the current pixel 

or not (depending on depth difference).
§  The number of samples needs to be reduced to a minimum 

(typically 10 - 16) to achieve acceptable performance.
§  If for every pixel the same samples are used, “banding” results. 

Therefore the sample locations are randomly rotated for every 
pixel.

§  The random rotation results in noise, which is then removed 
through blur.

23/10/13 1:38 PMjohn-chapman-graphics: SSAO Tutorial

Page 2 of 10http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html

This works in the following way:

project each sample point into screen space to get the coordinates into the depth buffer
sample the depth buffer
if the sample position is behind the sampled depth (i.e. inside geometry), it contributes to the occlusion
factor

Clearly the quality of the result is directly proportional to the number of samples, which needs to be minimized in order
to achieve decent performance. Reducing the number of samples, however, produces ugly 'banding' artifacts in the
result. This problem is remedied by randomly rotating the sample kernel at each pixel, trading banding for high
frequency noise which can be removed by blurring the result.

The Crysis method produces occlusion factors with a particular 'look' - because the sample kernel is a sphere, flat walls
end up looking grey because ~50% of the samples end up being inside the surrounding geometry. Concave corners
darken as expected, but convex ones appear lighter since fewer samples fall inside geometry. Although these artifacts
are visually acceptable, they produce a stylistic effect which strays somewhat from photorealism.

Rather than sample a spherical kernel at each pixel, we can sample within a hemisphere, oriented along the surface
normal at that pixel. This improves the look of the effect with the penalty of requiring per-fragment normal data. For a
deferred renderer, however, this is probably already available, so the cost is minimal (especially when compared with
the improved quality of the result).

The first step is to generate the sample kernel itself. The requirements are that

sample positions fall within the unit hemisphere
sample positions are more densely clustered towards the origin. This effectively attenuates the occlusion
contribution according to distance from the kernel centre - samples closer to a point occlude it more than
samples further away

Generating the hemisphere is easy:

for (int i = 0; i < kernelSize; ++i) {

   kernel[i] = vec3(

   random(-1.0f, 1.0f),

   random(-1.0f, 1.0f),

   random(0.0f, 1.0f)

NORMAL-ORIENTED HEMISPHERE

Generating the Sample Kernel



From http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html 



SSAO 

Advantages
§  Independent of scene complexity & dynamics.
§  Fully in hardware.
§  Well suited for deferred renderers (as normal map is typically 

available).

Disadvantages
§  Noise removal requires extra blur stage.
§  Limited “range” of sample sphere makes approach relatively 

local and view dependent.





4. OPENGL MECHANISMS



Source: opengl.org – OpenGL 4.4 specification, p32  



OPENGL MECHANISMS 
OVERVIEW

OpenGL mechanisms that are used for realizing DR:



1.  Programmable shading

Vertex shading, fragment shading

2.  Framebuffer objects (FBOs)

3.  Multiple render targets (MRTs)



OPENGL MECHANISMS 
FRAMEBUFFER OBJECTS (FBOS)
§  FBOs encapsulate a framebuffer that can be used for off-

screen rendering.

§  Each FBO has a given dimension, and a number of 
attachments (n ‘color’ buffers, depth buffer, and stencil 
buffer).

§  Attached buffers are either textures or renderbuffers.

§  FBOs can be enabled for writing and reading.



OPENGL MECHANISMS 
FBO RELEVANT API
§  glGenFramebuffer, glDeleteFramebuffers 

§  glBindFramebuffer 
Bind for reading or writing

§  glClearBuffer 
§  glFramebufferTexture2D 

Attach texture to FBO

§  glCheckFramebufferStatus 
Important: Check if FBO is correctly set up



OPENGL MECHANISMS 
MULTIPLE RENDER TARGETS (MRT)
§  Since we want to write multiple object attributes to the 

FBO’s attachments, the corresponding outputs need to 
be declared in the shader: 
  out vec4 color; 

 out vec4 normal; 

§  Use glDrawBuffers to enable writing to selected FBO 
attachments.

§  Note: Make sure these specifications match the FBO 
structure.



5. A SIMPLE DEFERRED 
RENDERER IN C++/CINDER



CINDER DEFERRED RENDERER 
OVERVIEW
§  A small renderer exemplifying some of the presented techniques.
§  Written in C++ using the Cinder framework.
§  Adapted from original code by Anthony Scavarelli and others, with 

several fixes and optimizations.

§  http://libcinder.org
§  https://github.com/arisona/cinder_deferred_renderer

§  Note 1: Based on OpenGL 2.0 + Extensions L
§  Note 2: Updated to use C++11 J



CINDER DEFERRED RENDERER 
FEATURES
§  Deferred shading of a large number of point lights 

(1000+).
§  SSAO 

http://www.gamerendering.com/2009/01/14/ssao/

§  Shadow support, but not for 1000 lights… (more on this 
during the next lecture).

§  FXAA (screen space software approximation to 
antialiasing). 
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf





Geometry 
Pass 

Lighting 
Pass 

Object 
Geometry & 
Attributes 

Lights 
(Point) 

G-Buffer G-Buffer G-Buffer 

Final Image 

Diffuse Color, Normal, Position 
Depth, Two-sided Flag 

Diffuse & Phong Coefficients 

Shadow Map 
Creation 

(Simplified) 

SSAO 
& Blur 

Compositing 
& 

FXAA 
FBO 

Shadow Map 

FBO 

FBO 

Compositing 
Geometry 

Pass 
G-Buffer 

Shadow Map 





6. WRAP UP & DISCUSSION



WRAP UP

§  DR can be used to build a multi-pass renderer that 
includes lighting, GI and effect compositing.

§  Allows for large amount of (dynamic) lights. However, 
minimization of light volumes is essential.

§  Many game engines include deferred renderers (e.g. 
Unity Pro, Torque).

§  In particular, SSAO has become a standard technique for 
ambient lighting.



WRAP UP 
DR LIMITATIONS
§  Requires reasonably modern, programmable graphics 

hardware (not generally a problem today).
§  Memory usage.
§  Memory bandwidth.
§  No support for transparency, need to use forward 

rendering for semi-transparent objects.
§  If above limitations become a factor, forward rendering 

can still be the better choice.



UNITY RENDERING PATHS!

UnityUnity GalleryGallery Asset StoreAsset Store CommunityCommunity CompanyCompany DownloadDownloadBuyBuy

Tutorials Documentation Live Training Premium Support

Previous Next

Previous Next

Rendering Paths
Unity supports different Rendering Paths. You should choose which one you use depending on your game content and target platform / hardware. Different rendering paths
have different features and performance characteristics that mostly affect Lights and Shadows.

The rendering Path used by your project is chosen in Player Settings. Additionally, you can override it for each Camera.

If the graphics card can't handle a selected rendering path, Unity will automatically use a lower fidelity one. So on a GPU that can't handle Deferred Lighting, Forward Rendering
will be used. If Forward Rendering is not supported, Vertex Lit will be used.

Deferred Lighting
Deferred Lighting is the rendering path with the most lighting and shadow fidelity. It is best used if you have many realtime lights. It requires a certain level of hardware support,
is for Unity Pro only.

For more details see the Deferred Lighting page.

Forward Rendering
Forward is a shader-based rendering path. It supports per-pixel lighting (including normal maps & light Cookies) and realtime shadows from one directional light. In the default
settings, a small number of the brightest lights are rendered in per-pixel lighting mode. The rest of the lights are calculated at object vertices.

For more details see the Forward Rendering page.

Vertex Lit
Vertex Lit is the rendering path with the lowest lighting fidelity and no support for realtime shadows. It is best used on old machines or limited mobile platforms.

For more details see the Vertex Lit page.

Rendering Paths Comparison
 Deferred Lighting Forward Rendering Vertex Lit
Features    
Per-pixel lighting (normal maps, light cookies) Yes Yes -
Realtime shadows Yes 1 Directional Light -
Dual Lightmaps Yes - -
Depth&Normals Buffers Yes Additional render passes -
Soft Particles Yes - -
Semitransparent objects - Yes Yes
Anti-Aliasing - Yes Yes
Light Culling Masks Limited Yes Yes
Lighting Fidelity All per-pixel Some per-pixel All per-vertex
Performance    
Cost of a per-pixel Light Number of pixels it illuminates Number of pixels * Number of objects it illuminates -
Platform Support    

PC (Windows/Mac) Shader Model 3.0+ Shader Model 2.0+ Anything
Mobile (iOS/Android) OpenGL ES 2.0 OpenGL ES 2.0 OpenGL ES 2.0 & 1.1

Consoles 360, PS3 360, PS3 -
Page last updated: 2013-08-27

LearnLearn

Unity Manual > Advanced > Graphics Features > Rendering Paths

Source: Unity Technologies 



7. QUESTIONS & LINKS



LINKS: DEFERRED SHADING
§  http://en.wikipedia.org/wiki/Deferred_shading

§  http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html 
 
OpenGL deferred shading tutorial (tutorials 35 - 37).

§  http://developer.amd.com/wordpress/media/2012/10/Deferred%20Shading%20Optimizations.pps 
 
Excellent discussion on deferred shading strategies and optimizations.

§  http://www.realtimerendering.com/blog/deferred-lighting-approaches/ 
 
Some additional considerations regarding deferred lighting.

§  http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf 
 
FXAA method used in sample code. Very useful for screen space operations.



LINKS: AO / SSAO

§  http://en.wikipedia.org/wiki/Ambient_occlusion



§  http://renderman.pixar.com/view/production-ready-global-illumination 
 
Good overview into ambient lighting techniques by Hayden Landis.

§  http://http.developer.nvidia.com/GPUGems/gpugems_ch17.html 
 
Overview of AO (not SSAO) implementation of GPUs.

§  http://en.wikipedia.org/wiki/Screen_space_ambient_occlusion

§  http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html 
 
Comprehensive and intuitive SSAO tutorial.


