DEFERRED RENDERING

typedef
templatecty <t d class InBussase;

& description,
flags, int size,

I flags),

deh),
(size, def)

~outBusBase() {}

int size() const { retu

void clear() {

, value); }

[index]; }
eturn

[index]; }

(SEC) SINGAPORE-ETH SNl —ETH
CENTRE AR

(FCL) FUTURE % 5k
CITIES i
LABORATORY XK=

CONTENTS

1. The traditional approach: Forward rendering
2. Deferred rendering (DR) overview
3. Example uses of DR:
a. Deferred shading
b. Ambient occlusion (AO)

Basic mechanisms to realize DR in OpenGL
A simple deferred renderer in C++/Cinder
Wrap-up & discussion

Questions & further reading

~NOo U A

~ARNING GOALS

Understand the motivation for DR and how it is different
from forward rendering.

Know the advantages, challenges, and limitations of DR.
Understand example uses of DR (shading, AQO).
Know the basic mechanisms in OpenGL to realize DR.

Download and explore the sample renderer.

1. FORWAR

FORWARD RENDERING

GENERAL APPROACH

The “traditional” approach since early OpenGL.

Geometric objects are sent as primitives to the GL.

Their vertices are transformed and processed by the vertex
shader.

The primitives are rasterized.

The fragments are processed by the fragment shader (final color,
depth test, masking, blending).

Shading can happen either in vertex or fragment shader or both.
Final fragments are written (or not written) to the framebuftfer.

- Display

List
Per-Vertex
— Operations Basteriz-: Per-
L L .
Exelugtar Primitive i ation -D—I:)ragmtt?nt] b butfer
Assembly e —
! I
Texture
Memory
Y Pixel }
- B
Operations s

Source: opengl.org - OpenGL 1.1 specification

From Application From Application
v v
Vertex Puller Dispatch
v 4
Vertex Shader
v
Tessellation Control Shader
v

Tessellation Primitive Gen.

v

Tessellation Eval. Shader

v
Geometry Shader

v
Transform Feedback I

F— Rasterization From Application
\ 4 v
Fragment Shader * Pixel Assembly
v \ A
Per-Fra_gmanvt Operations Pixel Operations
v

Pixel Pack

Compute Shader

Fixed Function Stage

Programmable Stage

Source: opengl.org - OpenGL 4.4 specification, p32

FORWARD RENDERING
OBSERVATIONS & LIMITATIONS

Classic, widely established and straightforward approach.
Supported by all graphics hardware.
Lighting cost

= Every object in the scene is shaded (remember that depth
test happens after fragment shading).

. Comp|e><ity Is O(nGeometries_pixels ¥ nLight‘s)'
= Some workarounds do exist (e.g. early depth test).
Local lighting only, no support for global illumination (Gl).

Shader complexity increases with number of geometry types,
material types, and light types.

DEFERRED RENDERING
GENERAL IDEA

» Multi-pass rendering approaches.

= Emerging methodology, refers to a whole class of
approaches, with many different options and
possibilities.

» General goal of the approaches is to reduce the amount

of fragments shaded (i.e., shade final visible fragments
only).

DEFERRED RENDERING
ORIGINAL IDEA

= Pass 1: Write geometry plus attributes into buffers (often
called G-Buffers).

= Typical attributes: Diffuse color, position, normal, texture
coordinates.

» Pass 2 - n: Operate on rendered frame buffers (i.e. in screen
space). Use attributes to calculate final pixel color.

M Deering, S Winner, B Schediwy, C Duffy, N Hunt (1988). "The triangle processor and normal
vector shader: a VLS| system for high performance graphics". ACM SIGGRAPH Computer
Graphics 22 (4): 21-30.

T Saito, T Takahashi (1990). "Comprehensible rendering of 3-D shapes". ACM SIGGRAPH
Computer Graphics 24 (4): 197-206.

Object Lights & Other
Geometry & Shading-related
Attributes Information

L 2 e

Geometry _ Shading Final Image
Pass h G-Buffer Pass(es) md i i s

DEFERRED SHADING
GENERAL IDEA

= Similar to previously shown diagram.

= Geometry pass stores information required for lighting in
each fragment: Diffuse color, position, normals.

= Shading pass then shades each framebuffer pixel for
each light according to chosen shading equation.

n

L(v,n) = Eccﬁﬁ ® fiir(Br,lk,V,n) + Cspec ® fipec(Br,li, v,n)

k=1

Object
Geometry &
Attributes

M

Geometry
Pass

G-Buffer

Lights
(Point or
Directional)

M

>

Lighting
Pass

-

Diffuse Color, Normal, Position
Diffuse & Phong Coefficients

Final Image

(via Blending or
Compositing)

DEFERRED SHADING
GENERAL IDEA

Similar to previously shown diagram

Geometry pass stores information required for lighting in
each fragment: Diffuse color, position, normals.

Shading pass then shades each framebufter pixel for
each light according to chosen shading equation.

: *
Overall Complethy O(nFramebuffer_pixe/s nLights)

DEFERRED SHADING
IGHT VOLUMES

= Most lights do not influence every pixel, e.g. when
distant / small.

» Thus, for each light we can only draw the area of
influence.
» For point lights, use a sphere or a cube.
» For directional lights, use a cone or a pyramid.

= Size of objects is determined by a light's attenuation

factors.

3B. EXAMPLE USES OF
AMBIENT OCCLUSION

AMBIENT OCCLUSION
INTRODUCTION

= Ambient occlusion is a technigue that approximates
global illumination (Gl), and in particular deals with
ambient environment lighting.

* |nsimple terms, the techniques takes into account that
some areas of an object receive less light from the
surrounding environment than others.

» Such areas need to be attenuated.

= First implemented by Hayden Landis et al. at ILM around
2002 for RenderMan, i.e. non-real-time.

DITICRRGIVIIEONIA Ambient Occlusion

e - -
s
= e L 3
4(} - ‘
0’ ™ ;»\
o ‘:\"":‘

© Lucas Digital LLC. Source: Pixar
http://renderman.pixar.com/view/production-ready-global-illumination

AMBIENT OCC

_USION

EARLIER IMPLEMENTATIONS

Generate ambient
occlusion map tor the
model.

Render the map
together with
environment map.

Generation can be
hardware accelerated,
e.g., using shadow
mapping with a large
number of lights.

For each triangle {

Compute center of triangle

Generate set of rays over the hemisphere there
Vector avgUnoccluded = Vector (0, 0, 0);

int numUnoccluded = 0;

For each ray {

If (ray doesn't intersect anything) {
avgUnoccluded += ray.direction;
++numUnoccluded;

}

}
avgUnoccluded
accessibility

normalize (avgUnoccluded) ;
numUnoccluded / numRays;

From NVidia GPUGems, Chapter 17
http:/http.developer.nvidia.com/GPUGems/gpugems ch17.html

AMBIENT OCCLUSION
APPROXIMATION USING DR

How can AO be achieved using deferred rendering?

SSAQO: SCREEN SPACE
AMBIENT OCCLUSION

= Approximates AO for real-time applications using a
deferred fragment shader.

= Originally developed at Crytec in 2007 for the game
Crysis, and then extended / moditied by others.

* |nstead of casting rays to obtain occlusion information,
the SSAQO approach samples the depth buffer.

SSAO Y &

= Most of today's implementations use a depth and a normal
map, with random samples on a hemisphere.

= Each sample is then tested whether it occludes the current pixel
or not (depending on depth difference).

* The number of samples needs to be reduced to a minimum
(typically 10 - 16) to achieve acceptable performance.

= |f for every pixel the same samples are used, “bandin?” results.
Theretfore the sample locations are randomly rotated for every
pixel.

= The random rotation results in noise, which is then removed
through blur.

From http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.htm/

SSAO

Advantages

* |Independent of scene complexity & dynamics.
= Fully in hardware.

» Well suited for deferred renderers (as normal map is typically
available).

Disadvantages
» Noise removal requires extra blur stage.

» Limited “range” of sample sphere makes approach relatively
local and view dependent.

ECHANISMS

Legend
Fixed Function Stage

——

Programmable Stage

From Application

v
S —_—

From Application

\ 4
Dispatch

Tessellation Control Shader

v

Tessellation Primitive Gen.

\4

Compute Shader

v

Tessellation Eval. Shader

\4
Geometry Shader
\ 4

Transform Feedback |

Rasterization

Per-Fragment Operations

From Application

\ 4
Pixel Assembly

Pixel Pack

Source: opengl.org - OpenGL 4.4 specification, p32

OPENGL MECHANISMS
OVERVIEW

OpenGL mechanisms that are used for realizing DR:

1. Programmable shading

Vertex shading, fragment shading
2. Framebuffer objects (FBOs)
3. Multiple render targets (MRTs)

OPENGL MECHANISMS
FRAMEBUFFER OBJECTS (FBOS)

FBOs encapsulate a framebufter that can be used for off-
screen rendering.

Each FBO has a given dimension, and a number of
attachments (n ‘color’ buffers, depth buffer, and stencil

buffer).
Attached buffers are either textures or renderbuffers.

FBOs can be enabled for writing and reading.

OPENGL MECHANISMS

FBO RELEVANT AP

glGenFramebuffer, glDeleteFramebuffers

glBindFramebuffer
Bind for reading or writing

glClearBuffer

glFramebufferTexture2D
Attach texture to FBO

glCheckFramebufferStatus
Important: Check it FBO is correctly set up

OPENGL MECHANISMS
MULTIPLE RENDER TARGETS (MRT)

= Since we want to write multiple object attributes to the
FBO's attachments, the corresponding outputs need to
be declared in the shader:
out vecd4 color;
out vecd4d normal;

» Use glDrawBuffers to enable writing to selected FBO
attachments.

= Note: Make sure these specifications match the FBO
structure.

5. A SIMPLE DEFERR
RENDERER IN C-

CINDER DEFERRED RENDERER
OVERVIEW

A small renderer exemplifying some of the presented techniques.
Written in C++ using the Cinder framework.

Adapted from original code by Anthony Scavarelli and others, with
several fixes and optimizations.

http://libcinder.org

https://qithub.com/arisona/cinder_deferred renderer

Note 1: Based on OpenGL 2.0 + Extensions ®
Note 2: Updated to use C++11 ©

CINDER DEFERRED RENDERER
FEATURES

Deferred shading of a large number of point lights
(1000+).

SSAO

http://www.gamerendering.com/2009/01/14/ssao/

Shadow support, but not for 1000 lights... (more on this
during the next lecture).

FXAA (screen space software approximation to

antialiasing).
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA WhitePaper.pdf

Diffuse Color, Normal, Position

Depth, Two-sided Flag
Diffuse & Phong Coefficients
Object o s Compositing
Geometry & # Gegmetry » G-Buffer ngI;)htmg &
Attributes ass | > ass FXAA
Lights SSAO :
(Point) | | . & Blur i Final Image
Shadow Map
-» Creation —> FBO —
.. (Simplified)

6. WRAP UP & DISCUSSION

WRAP UP

= DR can be used to build a multi-pass renderer that
includes lighting, Gl and effect compositing.

= Allows for large amount of (dynamic) lights. However,
minimization of light volumes is essential.

= Many game engines include deferred renderers (e.g.
Unity Pro, Torque).

* |n particular, SSAO has become a standard technique for
ambient lighting.

WRAP UP
DR LIMITATIONS

= Requires reasonably modern, programmable graphics
nardware (not generally a problem today).

= Memory usage.
= Memory bandwidth.

= No support for transparency, need to use forward
rendering for semi-transparent objects.

= |f above limitations become a factor, forward rendering
can still be the better choice.

UNITY R

Rendering Paths Comparison

Features

Per-pixel lighting (normal maps, light cookies)
Realtime shadows

Dual Lightmaps
Depth&Normals Buffers
Soft Particles
Semitransparent objects
Anti-Aliasing

Light Culling Masks
Lighting Fidelity
Performance

Cost of a per-pixel Light
Platform Support

PC (Windows/Mac)
Mobile (i0S/Android)

Consoles
Page last updated: 2013-08-27

Deferred Lighting

Yes
Yes
Yes
Yes
Yes

Limited
All per-pixel

Number of pixels it illuminates

Shader Model 3.0+
OpenGL ES 2.0

360, PS3

DERING PATHS

Forward Rendering

Yes
1 Directional Light

Additional render passes

Yes

Yes

Yes
Some per-pixel

Number of pixels * Number of objects it illuminates

Shader Model 2.0+
OpenGL ES 2.0

360, PS3

Vertex Lit

All per-vertex

Anything
OpenGLES 2.0 & 1.1

Source: Unity Technologies

-STIONS & LINKS

LINKS: DEFERRED SHADING

http://en.wikipedia.org/wiki/Deferred shading

http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html

OpenGL deferred shading tutorial (tutorials 35 - 37).

http://developer.amd.com/wordpress/media/2012/10/Deferred%20Shading%200ptimizations.pps

Excellent discussion on deferred shading strategies and optimizations.

http://www.realtimerendering.com/blog/deferred-lighting-approaches/

Some additional considerations regarding deferred lighting.

http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA WhitePaper.pdf

FXAA method used in sample code. Very useful for screen space operations.

LINKS: AO / SSAO

http://en.wikipedia.org/wiki/Ambient _occlusion

http://renderman.pixar.com/view/production-ready-global-illumination

Good overview into ambient lighting techniques by Hayden Landis.

http://http.developer.nvidia.com/GPUGems/gpugems ch17.html

Overview of AO (not SSAO) implementation of GPUs.

http://en.wikipedia.org/wiki/Screen space ambient occlusion

http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html

Comprehensive and intuitive SSAO tutorial.

